Mercurial > 510Connectbot
comparison src/com/jcraft/jzlib/Deflate.java @ 357:46c2115ae1c8
update jzlib to a21be20213d66eff15904d925e9b721956a01ef7
author | Carl Byington <carl@five-ten-sg.com> |
---|---|
date | Fri, 01 Aug 2014 13:34:58 -0700 |
parents | 0ce5cc452d02 |
children |
comparison
equal
deleted
inserted
replaced
356:5e91b559b5fe | 357:46c2115ae1c8 |
---|---|
1 /* -*-mode:java; c-basic-offset:2; -*- */ | 1 /* -*-mode:java; c-basic-offset:2; -*- */ |
2 /* | 2 /* |
3 Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. | 3 Copyright (c) 2000-2011 ymnk, JCraft,Inc. All rights reserved. |
4 | 4 |
5 Redistribution and use in source and binary forms, with or without | 5 Redistribution and use in source and binary forms, with or without |
6 modification, are permitted provided that the following conditions are met: | 6 modification, are permitted provided that the following conditions are met: |
7 | 7 |
8 1. Redistributions of source code must retain the above copyright notice, | 8 1. Redistributions of source code must retain the above copyright notice, |
9 this list of conditions and the following disclaimer. | 9 this list of conditions and the following disclaimer. |
10 | 10 |
11 2. Redistributions in binary form must reproduce the above copyright | 11 2. Redistributions in binary form must reproduce the above copyright |
12 notice, this list of conditions and the following disclaimer in | 12 notice, this list of conditions and the following disclaimer in |
13 the documentation and/or other materials provided with the distribution. | 13 the documentation and/or other materials provided with the distribution. |
14 | 14 |
15 3. The names of the authors may not be used to endorse or promote products | 15 3. The names of the authors may not be used to endorse or promote products |
16 derived from this software without specific prior written permission. | 16 derived from this software without specific prior written permission. |
17 | 17 |
32 * and contributors of zlib. | 32 * and contributors of zlib. |
33 */ | 33 */ |
34 | 34 |
35 package com.jcraft.jzlib; | 35 package com.jcraft.jzlib; |
36 | 36 |
37 public | 37 public |
38 final class Deflate { | 38 final class Deflate implements Cloneable { |
39 | 39 |
40 static final private int MAX_MEM_LEVEL = 9; | 40 static final private int MAX_MEM_LEVEL=9; |
41 | 41 |
42 static final private int Z_DEFAULT_COMPRESSION = -1; | 42 static final private int Z_DEFAULT_COMPRESSION=-1; |
43 | 43 |
44 static final private int MAX_WBITS = 15; // 32K LZ77 window | 44 static final private int MAX_WBITS=15; // 32K LZ77 window |
45 static final private int DEF_MEM_LEVEL = 8; | 45 static final private int DEF_MEM_LEVEL=8; |
46 | 46 |
47 static class Config { | 47 static class Config{ |
48 int good_length; // reduce lazy search above this match length | 48 int good_length; // reduce lazy search above this match length |
49 int max_lazy; // do not perform lazy search above this match length | 49 int max_lazy; // do not perform lazy search above this match length |
50 int nice_length; // quit search above this match length | 50 int nice_length; // quit search above this match length |
51 int max_chain; | 51 int max_chain; |
52 int func; | 52 int func; |
53 Config(int good_length, int max_lazy, | 53 Config(int good_length, int max_lazy, |
54 int nice_length, int max_chain, int func) { | 54 int nice_length, int max_chain, int func){ |
55 this.good_length = good_length; | 55 this.good_length=good_length; |
56 this.max_lazy = max_lazy; | 56 this.max_lazy=max_lazy; |
57 this.nice_length = nice_length; | 57 this.nice_length=nice_length; |
58 this.max_chain = max_chain; | 58 this.max_chain=max_chain; |
59 this.func = func; | 59 this.func=func; |
60 } | 60 } |
61 } | 61 } |
62 | 62 |
63 static final private int STORED = 0; | 63 static final private int STORED=0; |
64 static final private int FAST = 1; | 64 static final private int FAST=1; |
65 static final private int SLOW = 2; | 65 static final private int SLOW=2; |
66 static final private Config[] config_table; | 66 static final private Config[] config_table; |
67 static { | 67 static{ |
68 config_table = new Config[10]; | 68 config_table=new Config[10]; |
69 // good lazy nice chain | 69 // good lazy nice chain |
70 config_table[0] = new Config(0, 0, 0, 0, STORED); | 70 config_table[0]=new Config(0, 0, 0, 0, STORED); |
71 config_table[1] = new Config(4, 4, 8, 4, FAST); | 71 config_table[1]=new Config(4, 4, 8, 4, FAST); |
72 config_table[2] = new Config(4, 5, 16, 8, FAST); | 72 config_table[2]=new Config(4, 5, 16, 8, FAST); |
73 config_table[3] = new Config(4, 6, 32, 32, FAST); | 73 config_table[3]=new Config(4, 6, 32, 32, FAST); |
74 config_table[4] = new Config(4, 4, 16, 16, SLOW); | 74 |
75 config_table[5] = new Config(8, 16, 32, 32, SLOW); | 75 config_table[4]=new Config(4, 4, 16, 16, SLOW); |
76 config_table[6] = new Config(8, 16, 128, 128, SLOW); | 76 config_table[5]=new Config(8, 16, 32, 32, SLOW); |
77 config_table[7] = new Config(8, 32, 128, 256, SLOW); | 77 config_table[6]=new Config(8, 16, 128, 128, SLOW); |
78 config_table[8] = new Config(32, 128, 258, 1024, SLOW); | 78 config_table[7]=new Config(8, 32, 128, 256, SLOW); |
79 config_table[9] = new Config(32, 258, 258, 4096, SLOW); | 79 config_table[8]=new Config(32, 128, 258, 1024, SLOW); |
80 } | 80 config_table[9]=new Config(32, 258, 258, 4096, SLOW); |
81 | 81 } |
82 static final private String[] z_errmsg = { | 82 |
83 "need dictionary", // Z_NEED_DICT 2 | 83 static final private String[] z_errmsg = { |
84 "stream end", // Z_STREAM_END 1 | 84 "need dictionary", // Z_NEED_DICT 2 |
85 "", // Z_OK 0 | 85 "stream end", // Z_STREAM_END 1 |
86 "file error", // Z_ERRNO (-1) | 86 "", // Z_OK 0 |
87 "stream error", // Z_STREAM_ERROR (-2) | 87 "file error", // Z_ERRNO (-1) |
88 "data error", // Z_DATA_ERROR (-3) | 88 "stream error", // Z_STREAM_ERROR (-2) |
89 "insufficient memory", // Z_MEM_ERROR (-4) | 89 "data error", // Z_DATA_ERROR (-3) |
90 "buffer error", // Z_BUF_ERROR (-5) | 90 "insufficient memory", // Z_MEM_ERROR (-4) |
91 "incompatible version",// Z_VERSION_ERROR (-6) | 91 "buffer error", // Z_BUF_ERROR (-5) |
92 "" | 92 "incompatible version",// Z_VERSION_ERROR (-6) |
93 }; | 93 "" |
94 | 94 }; |
95 // block not completed, need more input or more output | 95 |
96 static final private int NeedMore = 0; | 96 // block not completed, need more input or more output |
97 | 97 static final private int NeedMore=0; |
98 // block flush performed | 98 |
99 static final private int BlockDone = 1; | 99 // block flush performed |
100 | 100 static final private int BlockDone=1; |
101 // finish started, need only more output at next deflate | 101 |
102 static final private int FinishStarted = 2; | 102 // finish started, need only more output at next deflate |
103 | 103 static final private int FinishStarted=2; |
104 // finish done, accept no more input or output | 104 |
105 static final private int FinishDone = 3; | 105 // finish done, accept no more input or output |
106 | 106 static final private int FinishDone=3; |
107 // preset dictionary flag in zlib header | 107 |
108 static final private int PRESET_DICT = 0x20; | 108 // preset dictionary flag in zlib header |
109 | 109 static final private int PRESET_DICT=0x20; |
110 static final private int Z_FILTERED = 1; | 110 |
111 static final private int Z_HUFFMAN_ONLY = 2; | 111 static final private int Z_FILTERED=1; |
112 static final private int Z_DEFAULT_STRATEGY = 0; | 112 static final private int Z_HUFFMAN_ONLY=2; |
113 | 113 static final private int Z_DEFAULT_STRATEGY=0; |
114 static final private int Z_NO_FLUSH = 0; | 114 |
115 static final private int Z_PARTIAL_FLUSH = 1; | 115 static final private int Z_NO_FLUSH=0; |
116 static final private int Z_SYNC_FLUSH = 2; | 116 static final private int Z_PARTIAL_FLUSH=1; |
117 static final private int Z_FULL_FLUSH = 3; | 117 static final private int Z_SYNC_FLUSH=2; |
118 static final private int Z_FINISH = 4; | 118 static final private int Z_FULL_FLUSH=3; |
119 | 119 static final private int Z_FINISH=4; |
120 static final private int Z_OK = 0; | 120 |
121 static final private int Z_STREAM_END = 1; | 121 static final private int Z_OK=0; |
122 static final private int Z_NEED_DICT = 2; | 122 static final private int Z_STREAM_END=1; |
123 static final private int Z_ERRNO = -1; | 123 static final private int Z_NEED_DICT=2; |
124 static final private int Z_STREAM_ERROR = -2; | 124 static final private int Z_ERRNO=-1; |
125 static final private int Z_DATA_ERROR = -3; | 125 static final private int Z_STREAM_ERROR=-2; |
126 static final private int Z_MEM_ERROR = -4; | 126 static final private int Z_DATA_ERROR=-3; |
127 static final private int Z_BUF_ERROR = -5; | 127 static final private int Z_MEM_ERROR=-4; |
128 static final private int Z_VERSION_ERROR = -6; | 128 static final private int Z_BUF_ERROR=-5; |
129 | 129 static final private int Z_VERSION_ERROR=-6; |
130 static final private int INIT_STATE = 42; | 130 |
131 static final private int BUSY_STATE = 113; | 131 static final private int INIT_STATE=42; |
132 static final private int FINISH_STATE = 666; | 132 static final private int BUSY_STATE=113; |
133 | 133 static final private int FINISH_STATE=666; |
134 // The deflate compression method | 134 |
135 static final private int Z_DEFLATED = 8; | 135 // The deflate compression method |
136 | 136 static final private int Z_DEFLATED=8; |
137 static final private int STORED_BLOCK = 0; | 137 |
138 static final private int STATIC_TREES = 1; | 138 static final private int STORED_BLOCK=0; |
139 static final private int DYN_TREES = 2; | 139 static final private int STATIC_TREES=1; |
140 | 140 static final private int DYN_TREES=2; |
141 // The three kinds of block type | 141 |
142 static final private int Z_BINARY = 0; | 142 // The three kinds of block type |
143 static final private int Z_ASCII = 1; | 143 static final private int Z_BINARY=0; |
144 static final private int Z_UNKNOWN = 2; | 144 static final private int Z_ASCII=1; |
145 | 145 static final private int Z_UNKNOWN=2; |
146 static final private int Buf_size = 8 * 2; | 146 |
147 | 147 static final private int Buf_size=8*2; |
148 // repeat previous bit length 3-6 times (2 bits of repeat count) | 148 |
149 static final private int REP_3_6 = 16; | 149 // repeat previous bit length 3-6 times (2 bits of repeat count) |
150 | 150 static final private int REP_3_6=16; |
151 // repeat a zero length 3-10 times (3 bits of repeat count) | 151 |
152 static final private int REPZ_3_10 = 17; | 152 // repeat a zero length 3-10 times (3 bits of repeat count) |
153 | 153 static final private int REPZ_3_10=17; |
154 // repeat a zero length 11-138 times (7 bits of repeat count) | 154 |
155 static final private int REPZ_11_138 = 18; | 155 // repeat a zero length 11-138 times (7 bits of repeat count) |
156 | 156 static final private int REPZ_11_138=18; |
157 static final private int MIN_MATCH = 3; | 157 |
158 static final private int MAX_MATCH = 258; | 158 static final private int MIN_MATCH=3; |
159 static final private int MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); | 159 static final private int MAX_MATCH=258; |
160 | 160 static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1); |
161 static final private int MAX_BITS = 15; | 161 |
162 static final private int D_CODES = 30; | 162 static final private int MAX_BITS=15; |
163 static final private int BL_CODES = 19; | 163 static final private int D_CODES=30; |
164 static final private int LENGTH_CODES = 29; | 164 static final private int BL_CODES=19; |
165 static final private int LITERALS = 256; | 165 static final private int LENGTH_CODES=29; |
166 static final private int L_CODES = (LITERALS + 1 + LENGTH_CODES); | 166 static final private int LITERALS=256; |
167 static final private int HEAP_SIZE = (2 * L_CODES + 1); | 167 static final private int L_CODES=(LITERALS+1+LENGTH_CODES); |
168 | 168 static final private int HEAP_SIZE=(2*L_CODES+1); |
169 static final private int END_BLOCK = 256; | 169 |
170 | 170 static final private int END_BLOCK=256; |
171 ZStream strm; // pointer back to this zlib stream | 171 |
172 int status; // as the name implies | 172 ZStream strm; // pointer back to this zlib stream |
173 byte[] pending_buf; // output still pending | 173 int status; // as the name implies |
174 int pending_buf_size; // size of pending_buf | 174 byte[] pending_buf; // output still pending |
175 int pending_out; // next pending byte to output to the stream | 175 int pending_buf_size; // size of pending_buf |
176 int pending; // nb of bytes in the pending buffer | 176 int pending_out; // next pending byte to output to the stream |
177 int noheader; // suppress zlib header and adler32 | 177 int pending; // nb of bytes in the pending buffer |
178 byte data_type; // UNKNOWN, BINARY or ASCII | 178 int wrap = 1; |
179 byte method; // STORED (for zip only) or DEFLATED | 179 byte data_type; // UNKNOWN, BINARY or ASCII |
180 int last_flush; // value of flush param for previous deflate call | 180 byte method; // STORED (for zip only) or DEFLATED |
181 | 181 int last_flush; // value of flush param for previous deflate call |
182 int w_size; // LZ77 window size (32K by default) | 182 |
183 int w_bits; // log2(w_size) (8..16) | 183 int w_size; // LZ77 window size (32K by default) |
184 int w_mask; // w_size - 1 | 184 int w_bits; // log2(w_size) (8..16) |
185 | 185 int w_mask; // w_size - 1 |
186 byte[] window; | 186 |
187 // Sliding window. Input bytes are read into the second half of the window, | 187 byte[] window; |
188 // and move to the first half later to keep a dictionary of at least wSize | 188 // Sliding window. Input bytes are read into the second half of the window, |
189 // bytes. With this organization, matches are limited to a distance of | 189 // and move to the first half later to keep a dictionary of at least wSize |
190 // wSize-MAX_MATCH bytes, but this ensures that IO is always | 190 // bytes. With this organization, matches are limited to a distance of |
191 // performed with a length multiple of the block size. Also, it limits | 191 // wSize-MAX_MATCH bytes, but this ensures that IO is always |
192 // the window size to 64K, which is quite useful on MSDOS. | 192 // performed with a length multiple of the block size. Also, it limits |
193 // To do: use the user input buffer as sliding window. | 193 // the window size to 64K, which is quite useful on MSDOS. |
194 | 194 // To do: use the user input buffer as sliding window. |
195 int window_size; | 195 |
196 // Actual size of window: 2*wSize, except when the user input buffer | 196 int window_size; |
197 // is directly used as sliding window. | 197 // Actual size of window: 2*wSize, except when the user input buffer |
198 | 198 // is directly used as sliding window. |
199 short[] prev; | 199 |
200 // Link to older string with same hash index. To limit the size of this | 200 short[] prev; |
201 // array to 64K, this link is maintained only for the last 32K strings. | 201 // Link to older string with same hash index. To limit the size of this |
202 // An index in this array is thus a window index modulo 32K. | 202 // array to 64K, this link is maintained only for the last 32K strings. |
203 | 203 // An index in this array is thus a window index modulo 32K. |
204 short[] head; // Heads of the hash chains or NIL. | 204 |
205 | 205 short[] head; // Heads of the hash chains or NIL. |
206 int ins_h; // hash index of string to be inserted | 206 |
207 int hash_size; // number of elements in hash table | 207 int ins_h; // hash index of string to be inserted |
208 int hash_bits; // log2(hash_size) | 208 int hash_size; // number of elements in hash table |
209 int hash_mask; // hash_size-1 | 209 int hash_bits; // log2(hash_size) |
210 | 210 int hash_mask; // hash_size-1 |
211 // Number of bits by which ins_h must be shifted at each input | 211 |
212 // step. It must be such that after MIN_MATCH steps, the oldest | 212 // Number of bits by which ins_h must be shifted at each input |
213 // byte no longer takes part in the hash key, that is: | 213 // step. It must be such that after MIN_MATCH steps, the oldest |
214 // hash_shift * MIN_MATCH >= hash_bits | 214 // byte no longer takes part in the hash key, that is: |
215 int hash_shift; | 215 // hash_shift * MIN_MATCH >= hash_bits |
216 | 216 int hash_shift; |
217 // Window position at the beginning of the current output block. Gets | 217 |
218 // negative when the window is moved backwards. | 218 // Window position at the beginning of the current output block. Gets |
219 | 219 // negative when the window is moved backwards. |
220 int block_start; | 220 |
221 | 221 int block_start; |
222 int match_length; // length of best match | 222 |
223 int prev_match; // previous match | 223 int match_length; // length of best match |
224 int match_available; // set if previous match exists | 224 int prev_match; // previous match |
225 int strstart; // start of string to insert | 225 int match_available; // set if previous match exists |
226 int match_start; // start of matching string | 226 int strstart; // start of string to insert |
227 int lookahead; // number of valid bytes ahead in window | 227 int match_start; // start of matching string |
228 | 228 int lookahead; // number of valid bytes ahead in window |
229 // Length of the best match at previous step. Matches not greater than this | 229 |
230 // are discarded. This is used in the lazy match evaluation. | 230 // Length of the best match at previous step. Matches not greater than this |
231 int prev_length; | 231 // are discarded. This is used in the lazy match evaluation. |
232 | 232 int prev_length; |
233 // To speed up deflation, hash chains are never searched beyond this | 233 |
234 // length. A higher limit improves compression ratio but degrades the speed. | 234 // To speed up deflation, hash chains are never searched beyond this |
235 int max_chain_length; | 235 // length. A higher limit improves compression ratio but degrades the speed. |
236 | 236 int max_chain_length; |
237 // Attempt to find a better match only when the current match is strictly | 237 |
238 // smaller than this value. This mechanism is used only for compression | 238 // Attempt to find a better match only when the current match is strictly |
239 // levels >= 4. | 239 // smaller than this value. This mechanism is used only for compression |
240 int max_lazy_match; | 240 // levels >= 4. |
241 | 241 int max_lazy_match; |
242 // Insert new strings in the hash table only if the match length is not | 242 |
243 // greater than this length. This saves time but degrades compression. | 243 // Insert new strings in the hash table only if the match length is not |
244 // max_insert_length is used only for compression levels <= 3. | 244 // greater than this length. This saves time but degrades compression. |
245 | 245 // max_insert_length is used only for compression levels <= 3. |
246 int level; // compression level (1..9) | 246 |
247 int strategy; // favor or force Huffman coding | 247 int level; // compression level (1..9) |
248 | 248 int strategy; // favor or force Huffman coding |
249 // Use a faster search when the previous match is longer than this | 249 |
250 int good_match; | 250 // Use a faster search when the previous match is longer than this |
251 | 251 int good_match; |
252 // Stop searching when current match exceeds this | 252 |
253 int nice_match; | 253 // Stop searching when current match exceeds this |
254 | 254 int nice_match; |
255 short[] dyn_ltree; // literal and length tree | 255 |
256 short[] dyn_dtree; // distance tree | 256 short[] dyn_ltree; // literal and length tree |
257 short[] bl_tree; // Huffman tree for bit lengths | 257 short[] dyn_dtree; // distance tree |
258 | 258 short[] bl_tree; // Huffman tree for bit lengths |
259 Tree l_desc = new Tree(); // desc for literal tree | 259 |
260 Tree d_desc = new Tree(); // desc for distance tree | 260 Tree l_desc=new Tree(); // desc for literal tree |
261 Tree bl_desc = new Tree(); // desc for bit length tree | 261 Tree d_desc=new Tree(); // desc for distance tree |
262 | 262 Tree bl_desc=new Tree(); // desc for bit length tree |
263 // number of codes at each bit length for an optimal tree | 263 |
264 short[] bl_count = new short[MAX_BITS + 1]; | 264 // number of codes at each bit length for an optimal tree |
265 | 265 short[] bl_count=new short[MAX_BITS+1]; |
266 // heap used to build the Huffman trees | 266 // working area to be used in Tree#gen_codes() |
267 int[] heap = new int[2 * L_CODES + 1]; | 267 short[] next_code=new short[MAX_BITS+1]; |
268 | 268 |
269 int heap_len; // number of elements in the heap | 269 // heap used to build the Huffman trees |
270 int heap_max; // element of largest frequency | 270 int[] heap=new int[2*L_CODES+1]; |
271 // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | 271 |
272 // The same heap array is used to build all trees. | 272 int heap_len; // number of elements in the heap |
273 | 273 int heap_max; // element of largest frequency |
274 // Depth of each subtree used as tie breaker for trees of equal frequency | 274 // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. |
275 byte[] depth = new byte[2 * L_CODES + 1]; | 275 // The same heap array is used to build all trees. |
276 | 276 |
277 int l_buf; // index for literals or lengths */ | 277 // Depth of each subtree used as tie breaker for trees of equal frequency |
278 | 278 byte[] depth=new byte[2*L_CODES+1]; |
279 // Size of match buffer for literals/lengths. There are 4 reasons for | 279 |
280 // limiting lit_bufsize to 64K: | 280 byte[] l_buf; // index for literals or lengths */ |
281 // - frequencies can be kept in 16 bit counters | 281 |
282 // - if compression is not successful for the first block, all input | 282 // Size of match buffer for literals/lengths. There are 4 reasons for |
283 // data is still in the window so we can still emit a stored block even | 283 // limiting lit_bufsize to 64K: |
284 // when input comes from standard input. (This can also be done for | 284 // - frequencies can be kept in 16 bit counters |
285 // all blocks if lit_bufsize is not greater than 32K.) | 285 // - if compression is not successful for the first block, all input |
286 // - if compression is not successful for a file smaller than 64K, we can | 286 // data is still in the window so we can still emit a stored block even |
287 // even emit a stored file instead of a stored block (saving 5 bytes). | 287 // when input comes from standard input. (This can also be done for |
288 // This is applicable only for zip (not gzip or zlib). | 288 // all blocks if lit_bufsize is not greater than 32K.) |
289 // - creating new Huffman trees less frequently may not provide fast | 289 // - if compression is not successful for a file smaller than 64K, we can |
290 // adaptation to changes in the input data statistics. (Take for | 290 // even emit a stored file instead of a stored block (saving 5 bytes). |
291 // example a binary file with poorly compressible code followed by | 291 // This is applicable only for zip (not gzip or zlib). |
292 // a highly compressible string table.) Smaller buffer sizes give | 292 // - creating new Huffman trees less frequently may not provide fast |
293 // fast adaptation but have of course the overhead of transmitting | 293 // adaptation to changes in the input data statistics. (Take for |
294 // trees more frequently. | 294 // example a binary file with poorly compressible code followed by |
295 // - I can't count above 4 | 295 // a highly compressible string table.) Smaller buffer sizes give |
296 int lit_bufsize; | 296 // fast adaptation but have of course the overhead of transmitting |
297 | 297 // trees more frequently. |
298 int last_lit; // running index in l_buf | 298 // - I can't count above 4 |
299 | 299 int lit_bufsize; |
300 // Buffer for distances. To simplify the code, d_buf and l_buf have | 300 |
301 // the same number of elements. To use different lengths, an extra flag | 301 int last_lit; // running index in l_buf |
302 // array would be necessary. | 302 |
303 | 303 // Buffer for distances. To simplify the code, d_buf and l_buf have |
304 int d_buf; // index of pendig_buf | 304 // the same number of elements. To use different lengths, an extra flag |
305 | 305 // array would be necessary. |
306 int opt_len; // bit length of current block with optimal trees | 306 |
307 int static_len; // bit length of current block with static trees | 307 int d_buf; // index of pendig_buf |
308 int matches; // number of string matches in current block | 308 |
309 int last_eob_len; // bit length of EOB code for last block | 309 int opt_len; // bit length of current block with optimal trees |
310 | 310 int static_len; // bit length of current block with static trees |
311 // Output buffer. bits are inserted starting at the bottom (least | 311 int matches; // number of string matches in current block |
312 // significant bits). | 312 int last_eob_len; // bit length of EOB code for last block |
313 short bi_buf; | 313 |
314 | 314 // Output buffer. bits are inserted starting at the bottom (least |
315 // Number of valid bits in bi_buf. All bits above the last valid bit | 315 // significant bits). |
316 // are always zero. | 316 short bi_buf; |
317 int bi_valid; | 317 |
318 | 318 // Number of valid bits in bi_buf. All bits above the last valid bit |
319 Deflate() { | 319 // are always zero. |
320 dyn_ltree = new short[HEAP_SIZE * 2]; | 320 int bi_valid; |
321 dyn_dtree = new short[(2 * D_CODES + 1) * 2]; // distance tree | 321 |
322 bl_tree = new short[(2 * BL_CODES + 1) * 2]; // Huffman tree for bit lengths | 322 GZIPHeader gheader = null; |
323 } | 323 |
324 | 324 Deflate(ZStream strm){ |
325 void lm_init() { | 325 this.strm=strm; |
326 window_size = 2 * w_size; | 326 dyn_ltree=new short[HEAP_SIZE*2]; |
327 head[hash_size - 1] = 0; | 327 dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree |
328 | 328 bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths |
329 for (int i = 0; i < hash_size - 1; i++) { | 329 } |
330 head[i] = 0; | 330 |
331 } | 331 void lm_init() { |
332 | 332 window_size=2*w_size; |
333 // Set the default configuration parameters: | 333 |
334 max_lazy_match = Deflate.config_table[level].max_lazy; | 334 head[hash_size-1]=0; |
335 good_match = Deflate.config_table[level].good_length; | 335 for(int i=0; i<hash_size-1; i++){ |
336 nice_match = Deflate.config_table[level].nice_length; | 336 head[i]=0; |
337 max_chain_length = Deflate.config_table[level].max_chain; | 337 } |
338 strstart = 0; | 338 |
339 block_start = 0; | 339 // Set the default configuration parameters: |
340 lookahead = 0; | 340 max_lazy_match = Deflate.config_table[level].max_lazy; |
341 match_length = prev_length = MIN_MATCH - 1; | 341 good_match = Deflate.config_table[level].good_length; |
342 match_available = 0; | 342 nice_match = Deflate.config_table[level].nice_length; |
343 ins_h = 0; | 343 max_chain_length = Deflate.config_table[level].max_chain; |
344 } | 344 |
345 | 345 strstart = 0; |
346 // Initialize the tree data structures for a new zlib stream. | 346 block_start = 0; |
347 void tr_init() { | 347 lookahead = 0; |
348 l_desc.dyn_tree = dyn_ltree; | 348 match_length = prev_length = MIN_MATCH-1; |
349 l_desc.stat_desc = StaticTree.static_l_desc; | 349 match_available = 0; |
350 d_desc.dyn_tree = dyn_dtree; | 350 ins_h = 0; |
351 d_desc.stat_desc = StaticTree.static_d_desc; | 351 } |
352 bl_desc.dyn_tree = bl_tree; | 352 |
353 bl_desc.stat_desc = StaticTree.static_bl_desc; | 353 // Initialize the tree data structures for a new zlib stream. |
354 bi_buf = 0; | 354 void tr_init(){ |
355 bi_valid = 0; | 355 |
356 last_eob_len = 8; // enough lookahead for inflate | 356 l_desc.dyn_tree = dyn_ltree; |
357 // Initialize the first block of the first file: | 357 l_desc.stat_desc = StaticTree.static_l_desc; |
358 init_block(); | 358 |
359 } | 359 d_desc.dyn_tree = dyn_dtree; |
360 | 360 d_desc.stat_desc = StaticTree.static_d_desc; |
361 void init_block() { | 361 |
362 // Initialize the trees. | 362 bl_desc.dyn_tree = bl_tree; |
363 for (int i = 0; i < L_CODES; i++) dyn_ltree[i * 2] = 0; | 363 bl_desc.stat_desc = StaticTree.static_bl_desc; |
364 | 364 |
365 for (int i = 0; i < D_CODES; i++) dyn_dtree[i * 2] = 0; | 365 bi_buf = 0; |
366 | 366 bi_valid = 0; |
367 for (int i = 0; i < BL_CODES; i++) bl_tree[i * 2] = 0; | 367 last_eob_len = 8; // enough lookahead for inflate |
368 | 368 |
369 dyn_ltree[END_BLOCK * 2] = 1; | 369 // Initialize the first block of the first file: |
370 opt_len = static_len = 0; | 370 init_block(); |
371 last_lit = matches = 0; | 371 } |
372 } | 372 |
373 | 373 void init_block(){ |
374 // Restore the heap property by moving down the tree starting at node k, | 374 // Initialize the trees. |
375 // exchanging a node with the smallest of its two sons if necessary, stopping | 375 for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0; |
376 // when the heap property is re-established (each father smaller than its | 376 for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0; |
377 // two sons). | 377 for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0; |
378 void pqdownheap(short[] tree, // the tree to restore | 378 |
379 int k // node to move down | 379 dyn_ltree[END_BLOCK*2] = 1; |
380 ) { | 380 opt_len = static_len = 0; |
381 int v = heap[k]; | 381 last_lit = matches = 0; |
382 int j = k << 1; // left son of k | 382 } |
383 | 383 |
384 while (j <= heap_len) { | 384 // Restore the heap property by moving down the tree starting at node k, |
385 // Set j to the smallest of the two sons: | 385 // exchanging a node with the smallest of its two sons if necessary, stopping |
386 if (j < heap_len && | 386 // when the heap property is re-established (each father smaller than its |
387 smaller(tree, heap[j + 1], heap[j], depth)) { | 387 // two sons). |
388 j++; | 388 void pqdownheap(short[] tree, // the tree to restore |
389 } | 389 int k // node to move down |
390 | 390 ){ |
391 // Exit if v is smaller than both sons | 391 int v = heap[k]; |
392 if (smaller(tree, v, heap[j], depth)) break; | 392 int j = k << 1; // left son of k |
393 | 393 while (j <= heap_len) { |
394 // Exchange v with the smallest son | 394 // Set j to the smallest of the two sons: |
395 heap[k] = heap[j]; k = j; | 395 if (j < heap_len && |
396 // And continue down the tree, setting j to the left son of k | 396 smaller(tree, heap[j+1], heap[j], depth)){ |
397 j <<= 1; | 397 j++; |
398 } | 398 } |
399 | 399 // Exit if v is smaller than both sons |
400 heap[k] = v; | 400 if(smaller(tree, v, heap[j], depth)) break; |
401 } | 401 |
402 | 402 // Exchange v with the smallest son |
403 static boolean smaller(short[] tree, int n, int m, byte[] depth) { | 403 heap[k]=heap[j]; k = j; |
404 short tn2 = tree[n * 2]; | 404 // And continue down the tree, setting j to the left son of k |
405 short tm2 = tree[m * 2]; | 405 j <<= 1; |
406 return (tn2 < tm2 || | 406 } |
407 (tn2 == tm2 && depth[n] <= depth[m])); | 407 heap[k] = v; |
408 } | 408 } |
409 | 409 |
410 // Scan a literal or distance tree to determine the frequencies of the codes | 410 static boolean smaller(short[] tree, int n, int m, byte[] depth){ |
411 // in the bit length tree. | 411 short tn2=tree[n*2]; |
412 void scan_tree(short[] tree, // the tree to be scanned | 412 short tm2=tree[m*2]; |
413 int max_code // and its largest code of non zero frequency | 413 return (tn2<tm2 || |
414 ) { | 414 (tn2==tm2 && depth[n] <= depth[m])); |
415 int n; // iterates over all tree elements | 415 } |
416 int prevlen = -1; // last emitted length | 416 |
417 int curlen; // length of current code | 417 // Scan a literal or distance tree to determine the frequencies of the codes |
418 int nextlen = tree[0 * 2 + 1]; // length of next code | 418 // in the bit length tree. |
419 int count = 0; // repeat count of the current code | 419 void scan_tree (short[] tree,// the tree to be scanned |
420 int max_count = 7; // max repeat count | 420 int max_code // and its largest code of non zero frequency |
421 int min_count = 4; // min repeat count | 421 ){ |
422 | 422 int n; // iterates over all tree elements |
423 if (nextlen == 0) { max_count = 138; min_count = 3; } | 423 int prevlen = -1; // last emitted length |
424 | 424 int curlen; // length of current code |
425 tree[(max_code + 1) * 2 + 1] = (short)0xffff; // guard | 425 int nextlen = tree[0*2+1]; // length of next code |
426 | 426 int count = 0; // repeat count of the current code |
427 for (n = 0; n <= max_code; n++) { | 427 int max_count = 7; // max repeat count |
428 curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]; | 428 int min_count = 4; // min repeat count |
429 | 429 |
430 if (++count < max_count && curlen == nextlen) { | 430 if (nextlen == 0){ max_count = 138; min_count = 3; } |
431 continue; | 431 tree[(max_code+1)*2+1] = (short)0xffff; // guard |
432 } | 432 |
433 else if (count < min_count) { | 433 for(n = 0; n <= max_code; n++) { |
434 bl_tree[curlen * 2] += count; | 434 curlen = nextlen; nextlen = tree[(n+1)*2+1]; |
435 } | 435 if(++count < max_count && curlen == nextlen) { |
436 else if (curlen != 0) { | 436 continue; |
437 if (curlen != prevlen) bl_tree[curlen * 2]++; | 437 } |
438 | 438 else if(count < min_count) { |
439 bl_tree[REP_3_6 * 2]++; | 439 bl_tree[curlen*2] += count; |
440 } | 440 } |
441 else if (count <= 10) { | 441 else if(curlen != 0) { |
442 bl_tree[REPZ_3_10 * 2]++; | 442 if(curlen != prevlen) bl_tree[curlen*2]++; |
443 } | 443 bl_tree[REP_3_6*2]++; |
444 else { | 444 } |
445 bl_tree[REPZ_11_138 * 2]++; | 445 else if(count <= 10) { |
446 } | 446 bl_tree[REPZ_3_10*2]++; |
447 | 447 } |
448 count = 0; prevlen = curlen; | 448 else{ |
449 | 449 bl_tree[REPZ_11_138*2]++; |
450 if (nextlen == 0) { | 450 } |
451 max_count = 138; min_count = 3; | 451 count = 0; prevlen = curlen; |
452 } | 452 if(nextlen == 0) { |
453 else if (curlen == nextlen) { | 453 max_count = 138; min_count = 3; |
454 max_count = 6; min_count = 3; | 454 } |
455 } | 455 else if(curlen == nextlen) { |
456 else { | 456 max_count = 6; min_count = 3; |
457 max_count = 7; min_count = 4; | 457 } |
458 } | 458 else{ |
459 } | 459 max_count = 7; min_count = 4; |
460 } | 460 } |
461 | 461 } |
462 // Construct the Huffman tree for the bit lengths and return the index in | 462 } |
463 // bl_order of the last bit length code to send. | 463 |
464 int build_bl_tree() { | 464 // Construct the Huffman tree for the bit lengths and return the index in |
465 int max_blindex; // index of last bit length code of non zero freq | 465 // bl_order of the last bit length code to send. |
466 // Determine the bit length frequencies for literal and distance trees | 466 int build_bl_tree(){ |
467 scan_tree(dyn_ltree, l_desc.max_code); | 467 int max_blindex; // index of last bit length code of non zero freq |
468 scan_tree(dyn_dtree, d_desc.max_code); | 468 |
469 // Build the bit length tree: | 469 // Determine the bit length frequencies for literal and distance trees |
470 bl_desc.build_tree(this); | 470 scan_tree(dyn_ltree, l_desc.max_code); |
471 | 471 scan_tree(dyn_dtree, d_desc.max_code); |
472 // opt_len now includes the length of the tree representations, except | 472 |
473 // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | 473 // Build the bit length tree: |
474 // Determine the number of bit length codes to send. The pkzip format | 474 bl_desc.build_tree(this); |
475 // requires that at least 4 bit length codes be sent. (appnote.txt says | 475 // opt_len now includes the length of the tree representations, except |
476 // 3 but the actual value used is 4.) | 476 // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
477 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { | 477 |
478 if (bl_tree[Tree.bl_order[max_blindex] * 2 + 1] != 0) break; | 478 // Determine the number of bit length codes to send. The pkzip format |
479 } | 479 // requires that at least 4 bit length codes be sent. (appnote.txt says |
480 | 480 // 3 but the actual value used is 4.) |
481 // Update opt_len to include the bit length tree and counts | 481 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
482 opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; | 482 if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break; |
483 return max_blindex; | 483 } |
484 } | 484 // Update opt_len to include the bit length tree and counts |
485 | 485 opt_len += 3*(max_blindex+1) + 5+5+4; |
486 | 486 |
487 // Send the header for a block using dynamic Huffman trees: the counts, the | 487 return max_blindex; |
488 // lengths of the bit length codes, the literal tree and the distance tree. | 488 } |
489 // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | 489 |
490 void send_all_trees(int lcodes, int dcodes, int blcodes) { | 490 |
491 int rank; // index in bl_order | 491 // Send the header for a block using dynamic Huffman trees: the counts, the |
492 send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt | 492 // lengths of the bit length codes, the literal tree and the distance tree. |
493 send_bits(dcodes - 1, 5); | 493 // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
494 send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt | 494 void send_all_trees(int lcodes, int dcodes, int blcodes){ |
495 | 495 int rank; // index in bl_order |
496 for (rank = 0; rank < blcodes; rank++) { | 496 |
497 send_bits(bl_tree[Tree.bl_order[rank] * 2 + 1], 3); | 497 send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt |
498 } | 498 send_bits(dcodes-1, 5); |
499 | 499 send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt |
500 send_tree(dyn_ltree, lcodes - 1); // literal tree | 500 for (rank = 0; rank < blcodes; rank++) { |
501 send_tree(dyn_dtree, dcodes - 1); // distance tree | 501 send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3); |
502 } | 502 } |
503 | 503 send_tree(dyn_ltree, lcodes-1); // literal tree |
504 // Send a literal or distance tree in compressed form, using the codes in | 504 send_tree(dyn_dtree, dcodes-1); // distance tree |
505 // bl_tree. | 505 } |
506 void send_tree(short[] tree, // the tree to be sent | 506 |
507 int max_code // and its largest code of non zero frequency | 507 // Send a literal or distance tree in compressed form, using the codes in |
508 ) { | 508 // bl_tree. |
509 int n; // iterates over all tree elements | 509 void send_tree (short[] tree,// the tree to be sent |
510 int prevlen = -1; // last emitted length | 510 int max_code // and its largest code of non zero frequency |
511 int curlen; // length of current code | 511 ){ |
512 int nextlen = tree[0 * 2 + 1]; // length of next code | 512 int n; // iterates over all tree elements |
513 int count = 0; // repeat count of the current code | 513 int prevlen = -1; // last emitted length |
514 int max_count = 7; // max repeat count | 514 int curlen; // length of current code |
515 int min_count = 4; // min repeat count | 515 int nextlen = tree[0*2+1]; // length of next code |
516 | 516 int count = 0; // repeat count of the current code |
517 if (nextlen == 0) { max_count = 138; min_count = 3; } | 517 int max_count = 7; // max repeat count |
518 | 518 int min_count = 4; // min repeat count |
519 for (n = 0; n <= max_code; n++) { | 519 |
520 curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]; | 520 if (nextlen == 0){ max_count = 138; min_count = 3; } |
521 | 521 |
522 if (++count < max_count && curlen == nextlen) { | 522 for (n = 0; n <= max_code; n++) { |
523 continue; | 523 curlen = nextlen; nextlen = tree[(n+1)*2+1]; |
524 } | 524 if(++count < max_count && curlen == nextlen) { |
525 else if (count < min_count) { | 525 continue; |
526 do { send_code(curlen, bl_tree); } | 526 } |
527 while (--count != 0); | 527 else if(count < min_count) { |
528 } | 528 do { send_code(curlen, bl_tree); } while (--count != 0); |
529 else if (curlen != 0) { | 529 } |
530 if (curlen != prevlen) { | 530 else if(curlen != 0){ |
531 send_code(curlen, bl_tree); count--; | 531 if(curlen != prevlen){ |
532 } | 532 send_code(curlen, bl_tree); count--; |
533 | 533 } |
534 send_code(REP_3_6, bl_tree); | 534 send_code(REP_3_6, bl_tree); |
535 send_bits(count - 3, 2); | 535 send_bits(count-3, 2); |
536 } | 536 } |
537 else if (count <= 10) { | 537 else if(count <= 10){ |
538 send_code(REPZ_3_10, bl_tree); | 538 send_code(REPZ_3_10, bl_tree); |
539 send_bits(count - 3, 3); | 539 send_bits(count-3, 3); |
540 } | 540 } |
541 else { | 541 else{ |
542 send_code(REPZ_11_138, bl_tree); | 542 send_code(REPZ_11_138, bl_tree); |
543 send_bits(count - 11, 7); | 543 send_bits(count-11, 7); |
544 } | 544 } |
545 | 545 count = 0; prevlen = curlen; |
546 count = 0; prevlen = curlen; | 546 if(nextlen == 0){ |
547 | 547 max_count = 138; min_count = 3; |
548 if (nextlen == 0) { | 548 } |
549 max_count = 138; min_count = 3; | 549 else if(curlen == nextlen){ |
550 } | 550 max_count = 6; min_count = 3; |
551 else if (curlen == nextlen) { | 551 } |
552 max_count = 6; min_count = 3; | 552 else{ |
553 } | 553 max_count = 7; min_count = 4; |
554 else { | 554 } |
555 max_count = 7; min_count = 4; | 555 } |
556 } | 556 } |
557 } | 557 |
558 } | 558 // Output a byte on the stream. |
559 | 559 // IN assertion: there is enough room in pending_buf. |
560 // Output a byte on the stream. | 560 final void put_byte(byte[] p, int start, int len){ |
561 // IN assertion: there is enough room in pending_buf. | 561 System.arraycopy(p, start, pending_buf, pending, len); |
562 final void put_byte(byte[] p, int start, int len) { | 562 pending+=len; |
563 System.arraycopy(p, start, pending_buf, pending, len); | 563 } |
564 pending += len; | 564 |
565 } | 565 final void put_byte(byte c){ |
566 | 566 pending_buf[pending++]=c; |
567 final void put_byte(byte c) { | 567 } |
568 pending_buf[pending++] = c; | 568 final void put_short(int w) { |
569 } | 569 put_byte((byte)(w/*&0xff*/)); |
570 final void put_short(int w) { | 570 put_byte((byte)(w>>>8)); |
571 put_byte((byte)(w/*&0xff*/)); | 571 } |
572 put_byte((byte)(w >>> 8)); | 572 final void putShortMSB(int b){ |
573 } | 573 put_byte((byte)(b>>8)); |
574 final void putShortMSB(int b) { | 574 put_byte((byte)(b/*&0xff*/)); |
575 put_byte((byte)(b >> 8)); | 575 } |
576 put_byte((byte)(b/*&0xff*/)); | 576 |
577 } | 577 final void send_code(int c, short[] tree){ |
578 | 578 int c2=c*2; |
579 final void send_code(int c, short[] tree) { | 579 send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff)); |
580 int c2 = c * 2; | 580 } |
581 send_bits((tree[c2] & 0xffff), (tree[c2 + 1] & 0xffff)); | 581 |
582 } | 582 void send_bits(int value, int length){ |
583 | 583 int len = length; |
584 void send_bits(int value, int length) { | 584 if (bi_valid > (int)Buf_size - len) { |
585 int len = length; | 585 int val = value; |
586 | |
587 if (bi_valid > (int)Buf_size - len) { | |
588 int val = value; | |
589 // bi_buf |= (val << bi_valid); | 586 // bi_buf |= (val << bi_valid); |
590 bi_buf |= ((val << bi_valid) & 0xffff); | 587 bi_buf |= ((val << bi_valid)&0xffff); |
591 put_short(bi_buf); | 588 put_short(bi_buf); |
592 bi_buf = (short)(val >>> (Buf_size - bi_valid)); | 589 bi_buf = (short)(val >>> (Buf_size - bi_valid)); |
593 bi_valid += len - Buf_size; | 590 bi_valid += len - Buf_size; |
594 } | 591 } else { |
595 else { | |
596 // bi_buf |= (value) << bi_valid; | 592 // bi_buf |= (value) << bi_valid; |
597 bi_buf |= (((value) << bi_valid) & 0xffff); | 593 bi_buf |= (((value) << bi_valid)&0xffff); |
598 bi_valid += len; | 594 bi_valid += len; |
599 } | 595 } |
600 } | 596 } |
601 | 597 |
602 // Send one empty static block to give enough lookahead for inflate. | 598 // Send one empty static block to give enough lookahead for inflate. |
603 // This takes 10 bits, of which 7 may remain in the bit buffer. | 599 // This takes 10 bits, of which 7 may remain in the bit buffer. |
604 // The current inflate code requires 9 bits of lookahead. If the | 600 // The current inflate code requires 9 bits of lookahead. If the |
605 // last two codes for the previous block (real code plus EOB) were coded | 601 // last two codes for the previous block (real code plus EOB) were coded |
606 // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | 602 // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode |
607 // the last real code. In this case we send two empty static blocks instead | 603 // the last real code. In this case we send two empty static blocks instead |
608 // of one. (There are no problems if the previous block is stored or fixed.) | 604 // of one. (There are no problems if the previous block is stored or fixed.) |
609 // To simplify the code, we assume the worst case of last real code encoded | 605 // To simplify the code, we assume the worst case of last real code encoded |
610 // on one bit only. | 606 // on one bit only. |
611 void _tr_align() { | 607 void _tr_align(){ |
612 send_bits(STATIC_TREES << 1, 3); | 608 send_bits(STATIC_TREES<<1, 3); |
613 send_code(END_BLOCK, StaticTree.static_ltree); | 609 send_code(END_BLOCK, StaticTree.static_ltree); |
614 bi_flush(); | 610 |
615 | 611 bi_flush(); |
616 // Of the 10 bits for the empty block, we have already sent | 612 |
617 // (10 - bi_valid) bits. The lookahead for the last real code (before | 613 // Of the 10 bits for the empty block, we have already sent |
618 // the EOB of the previous block) was thus at least one plus the length | 614 // (10 - bi_valid) bits. The lookahead for the last real code (before |
619 // of the EOB plus what we have just sent of the empty static block. | 615 // the EOB of the previous block) was thus at least one plus the length |
620 if (1 + last_eob_len + 10 - bi_valid < 9) { | 616 // of the EOB plus what we have just sent of the empty static block. |
621 send_bits(STATIC_TREES << 1, 3); | 617 if (1 + last_eob_len + 10 - bi_valid < 9) { |
622 send_code(END_BLOCK, StaticTree.static_ltree); | 618 send_bits(STATIC_TREES<<1, 3); |
623 bi_flush(); | 619 send_code(END_BLOCK, StaticTree.static_ltree); |
624 } | 620 bi_flush(); |
625 | 621 } |
626 last_eob_len = 7; | 622 last_eob_len = 7; |
627 } | 623 } |
628 | 624 |
629 | 625 |
630 // Save the match info and tally the frequency counts. Return true if | 626 // Save the match info and tally the frequency counts. Return true if |
631 // the current block must be flushed. | 627 // the current block must be flushed. |
632 boolean _tr_tally(int dist, // distance of matched string | 628 boolean _tr_tally (int dist, // distance of matched string |
633 int lc // match length-MIN_MATCH or unmatched char (if dist==0) | 629 int lc // match length-MIN_MATCH or unmatched char (if dist==0) |
634 ) { | 630 ){ |
635 pending_buf[d_buf + last_lit * 2] = (byte)(dist >>> 8); | 631 |
636 pending_buf[d_buf + last_lit * 2 + 1] = (byte)dist; | 632 pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8); |
637 pending_buf[l_buf + last_lit] = (byte)lc; last_lit++; | 633 pending_buf[d_buf+last_lit*2+1] = (byte)dist; |
638 | 634 |
639 if (dist == 0) { | 635 l_buf[last_lit] = (byte)lc; last_lit++; |
640 // lc is the unmatched char | 636 |
641 dyn_ltree[lc * 2]++; | 637 if (dist == 0) { |
642 } | 638 // lc is the unmatched char |
643 else { | 639 dyn_ltree[lc*2]++; |
644 matches++; | 640 } |
645 // Here, lc is the match length - MIN_MATCH | 641 else { |
646 dist--; // dist = match distance - 1 | 642 matches++; |
647 dyn_ltree[(Tree._length_code[lc] + LITERALS + 1) * 2]++; | 643 // Here, lc is the match length - MIN_MATCH |
648 dyn_dtree[Tree.d_code(dist) * 2]++; | 644 dist--; // dist = match distance - 1 |
649 } | 645 dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++; |
650 | 646 dyn_dtree[Tree.d_code(dist)*2]++; |
651 if ((last_lit & 0x1fff) == 0 && level > 2) { | 647 } |
652 // Compute an upper bound for the compressed length | 648 |
653 int out_length = last_lit * 8; | 649 if ((last_lit & 0x1fff) == 0 && level > 2) { |
654 int in_length = strstart - block_start; | 650 // Compute an upper bound for the compressed length |
655 int dcode; | 651 int out_length = last_lit*8; |
656 | 652 int in_length = strstart - block_start; |
657 for (dcode = 0; dcode < D_CODES; dcode++) { | 653 int dcode; |
658 out_length += (int)dyn_dtree[dcode * 2] * | 654 for (dcode = 0; dcode < D_CODES; dcode++) { |
659 (5L + Tree.extra_dbits[dcode]); | 655 out_length += (int)dyn_dtree[dcode*2] * |
660 } | 656 (5L+Tree.extra_dbits[dcode]); |
661 | 657 } |
662 out_length >>>= 3; | 658 out_length >>>= 3; |
663 | 659 if ((matches < (last_lit/2)) && out_length < in_length/2) return true; |
664 if ((matches < (last_lit / 2)) && out_length < in_length / 2) return true; | 660 } |
665 } | 661 |
666 | 662 return (last_lit == lit_bufsize-1); |
667 return (last_lit == lit_bufsize - 1); | 663 // We avoid equality with lit_bufsize because of wraparound at 64K |
668 // We avoid equality with lit_bufsize because of wraparound at 64K | 664 // on 16 bit machines and because stored blocks are restricted to |
669 // on 16 bit machines and because stored blocks are restricted to | 665 // 64K-1 bytes. |
670 // 64K-1 bytes. | 666 } |
671 } | 667 |
672 | 668 // Send the block data compressed using the given Huffman trees |
673 // Send the block data compressed using the given Huffman trees | 669 void compress_block(short[] ltree, short[] dtree){ |
674 void compress_block(short[] ltree, short[] dtree) { | 670 int dist; // distance of matched string |
675 int dist; // distance of matched string | 671 int lc; // match length or unmatched char (if dist == 0) |
676 int lc; // match length or unmatched char (if dist == 0) | 672 int lx = 0; // running index in l_buf |
677 int lx = 0; // running index in l_buf | 673 int code; // the code to send |
678 int code; // the code to send | 674 int extra; // number of extra bits to send |
679 int extra; // number of extra bits to send | 675 |
680 | 676 if (last_lit != 0){ |
681 if (last_lit != 0) { | 677 do{ |
682 do { | 678 dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)| |
683 dist = ((pending_buf[d_buf + lx * 2] << 8) & 0xff00) | | 679 (pending_buf[d_buf+lx*2+1]&0xff); |
684 (pending_buf[d_buf + lx * 2 + 1] & 0xff); | 680 lc=(l_buf[lx])&0xff; lx++; |
685 lc = (pending_buf[l_buf + lx]) & 0xff; lx++; | 681 |
686 | 682 if(dist == 0){ |
687 if (dist == 0) { | 683 send_code(lc, ltree); // send a literal byte |
688 send_code(lc, ltree); // send a literal byte | 684 } |
689 } | 685 else{ |
690 else { | 686 // Here, lc is the match length - MIN_MATCH |
691 // Here, lc is the match length - MIN_MATCH | 687 code = Tree._length_code[lc]; |
692 code = Tree._length_code[lc]; | 688 |
693 send_code(code + LITERALS + 1, ltree); // send the length code | 689 send_code(code+LITERALS+1, ltree); // send the length code |
694 extra = Tree.extra_lbits[code]; | 690 extra = Tree.extra_lbits[code]; |
695 | 691 if(extra != 0){ |
696 if (extra != 0) { | 692 lc -= Tree.base_length[code]; |
697 lc -= Tree.base_length[code]; | 693 send_bits(lc, extra); // send the extra length bits |
698 send_bits(lc, extra); // send the extra length bits | 694 } |
699 } | 695 dist--; // dist is now the match distance - 1 |
700 | 696 code = Tree.d_code(dist); |
701 dist--; // dist is now the match distance - 1 | 697 |
702 code = Tree.d_code(dist); | 698 send_code(code, dtree); // send the distance code |
703 send_code(code, dtree); // send the distance code | 699 extra = Tree.extra_dbits[code]; |
704 extra = Tree.extra_dbits[code]; | 700 if (extra != 0) { |
705 | 701 dist -= Tree.base_dist[code]; |
706 if (extra != 0) { | 702 send_bits(dist, extra); // send the extra distance bits |
707 dist -= Tree.base_dist[code]; | 703 } |
708 send_bits(dist, extra); // send the extra distance bits | 704 } // literal or match pair ? |
709 } | 705 |
710 } // literal or match pair ? | 706 // Check that the overlay between pending_buf and d_buf+l_buf is ok: |
711 | 707 } |
712 // Check that the overlay between pending_buf and d_buf+l_buf is ok: | 708 while (lx < last_lit); |
713 } | 709 } |
714 while (lx < last_lit); | 710 |
715 } | 711 send_code(END_BLOCK, ltree); |
716 | 712 last_eob_len = ltree[END_BLOCK*2+1]; |
717 send_code(END_BLOCK, ltree); | 713 } |
718 last_eob_len = ltree[END_BLOCK * 2 + 1]; | 714 |
719 } | 715 // Set the data type to ASCII or BINARY, using a crude approximation: |
720 | 716 // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. |
721 // Set the data type to ASCII or BINARY, using a crude approximation: | 717 // IN assertion: the fields freq of dyn_ltree are set and the total of all |
722 // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | 718 // frequencies does not exceed 64K (to fit in an int on 16 bit machines). |
723 // IN assertion: the fields freq of dyn_ltree are set and the total of all | 719 void set_data_type(){ |
724 // frequencies does not exceed 64K (to fit in an int on 16 bit machines). | 720 int n = 0; |
725 void set_data_type() { | 721 int ascii_freq = 0; |
726 int n = 0; | 722 int bin_freq = 0; |
727 int ascii_freq = 0; | 723 while(n<7){ bin_freq += dyn_ltree[n*2]; n++;} |
728 int bin_freq = 0; | 724 while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;} |
729 | 725 while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;} |
730 while (n < 7) { bin_freq += dyn_ltree[n * 2]; n++;} | 726 data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII); |
731 | 727 } |
732 while (n < 128) { ascii_freq += dyn_ltree[n * 2]; n++;} | 728 |
733 | 729 // Flush the bit buffer, keeping at most 7 bits in it. |
734 while (n < LITERALS) { bin_freq += dyn_ltree[n * 2]; n++;} | 730 void bi_flush(){ |
735 | 731 if (bi_valid == 16) { |
736 data_type = (byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII); | 732 put_short(bi_buf); |
737 } | 733 bi_buf=0; |
738 | 734 bi_valid=0; |
739 // Flush the bit buffer, keeping at most 7 bits in it. | 735 } |
740 void bi_flush() { | 736 else if (bi_valid >= 8) { |
741 if (bi_valid == 16) { | 737 put_byte((byte)bi_buf); |
742 put_short(bi_buf); | 738 bi_buf>>>=8; |
743 bi_buf = 0; | 739 bi_valid-=8; |
744 bi_valid = 0; | 740 } |
745 } | 741 } |
746 else if (bi_valid >= 8) { | 742 |
747 put_byte((byte)bi_buf); | 743 // Flush the bit buffer and align the output on a byte boundary |
748 bi_buf >>>= 8; | 744 void bi_windup(){ |
749 bi_valid -= 8; | 745 if (bi_valid > 8) { |
750 } | 746 put_short(bi_buf); |
751 } | 747 } else if (bi_valid > 0) { |
752 | 748 put_byte((byte)bi_buf); |
753 // Flush the bit buffer and align the output on a byte boundary | 749 } |
754 void bi_windup() { | 750 bi_buf = 0; |
755 if (bi_valid > 8) { | 751 bi_valid = 0; |
756 put_short(bi_buf); | 752 } |
757 } | 753 |
758 else if (bi_valid > 0) { | 754 // Copy a stored block, storing first the length and its |
759 put_byte((byte)bi_buf); | 755 // one's complement if requested. |
760 } | 756 void copy_block(int buf, // the input data |
761 | 757 int len, // its length |
762 bi_buf = 0; | 758 boolean header // true if block header must be written |
763 bi_valid = 0; | 759 ){ |
764 } | 760 int index=0; |
765 | 761 bi_windup(); // align on byte boundary |
766 // Copy a stored block, storing first the length and its | 762 last_eob_len = 8; // enough lookahead for inflate |
767 // one's complement if requested. | 763 |
768 void copy_block(int buf, // the input data | 764 if (header) { |
769 int len, // its length | 765 put_short((short)len); |
770 boolean header // true if block header must be written | 766 put_short((short)~len); |
771 ) { | 767 } |
772 int index = 0; | 768 |
773 bi_windup(); // align on byte boundary | 769 // while(len--!=0) { |
774 last_eob_len = 8; // enough lookahead for inflate | 770 // put_byte(window[buf+index]); |
775 | 771 // index++; |
776 if (header) { | 772 // } |
777 put_short((short)len); | 773 put_byte(window, buf, len); |
778 put_short((short)~len); | 774 } |
779 } | 775 |
780 | 776 void flush_block_only(boolean eof){ |
781 // while(len--!=0) { | 777 _tr_flush_block(block_start>=0 ? block_start : -1, |
782 // put_byte(window[buf+index]); | 778 strstart-block_start, |
783 // index++; | 779 eof); |
784 // } | 780 block_start=strstart; |
785 put_byte(window, buf, len); | 781 strm.flush_pending(); |
786 } | 782 } |
787 | 783 |
788 void flush_block_only(boolean eof) { | 784 // Copy without compression as much as possible from the input stream, return |
789 _tr_flush_block(block_start >= 0 ? block_start : -1, | 785 // the current block state. |
790 strstart - block_start, | 786 // This function does not insert new strings in the dictionary since |
791 eof); | 787 // uncompressible data is probably not useful. This function is used |
792 block_start = strstart; | 788 // only for the level=0 compression option. |
793 strm.flush_pending(); | 789 // NOTE: this function should be optimized to avoid extra copying from |
794 } | 790 // window to pending_buf. |
795 | 791 int deflate_stored(int flush){ |
796 // Copy without compression as much as possible from the input stream, return | 792 // Stored blocks are limited to 0xffff bytes, pending_buf is limited |
797 // the current block state. | 793 // to pending_buf_size, and each stored block has a 5 byte header: |
798 // This function does not insert new strings in the dictionary since | 794 |
799 // uncompressible data is probably not useful. This function is used | 795 int max_block_size = 0xffff; |
800 // only for the level=0 compression option. | 796 int max_start; |
801 // NOTE: this function should be optimized to avoid extra copying from | 797 |
802 // window to pending_buf. | 798 if(max_block_size > pending_buf_size - 5) { |
803 int deflate_stored(int flush) { | 799 max_block_size = pending_buf_size - 5; |
804 // Stored blocks are limited to 0xffff bytes, pending_buf is limited | 800 } |
805 // to pending_buf_size, and each stored block has a 5 byte header: | 801 |
806 int max_block_size = 0xffff; | 802 // Copy as much as possible from input to output: |
807 int max_start; | 803 while(true){ |
808 | 804 // Fill the window as much as possible: |
809 if (max_block_size > pending_buf_size - 5) { | 805 if(lookahead<=1){ |
810 max_block_size = pending_buf_size - 5; | 806 fill_window(); |
811 } | 807 if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore; |
812 | 808 if(lookahead==0) break; // flush the current block |
813 // Copy as much as possible from input to output: | 809 } |
814 while (true) { | 810 |
815 // Fill the window as much as possible: | 811 strstart+=lookahead; |
816 if (lookahead <= 1) { | 812 lookahead=0; |
817 fill_window(); | 813 |
818 | 814 // Emit a stored block if pending_buf will be full: |
819 if (lookahead == 0 && flush == Z_NO_FLUSH) return NeedMore; | 815 max_start=block_start+max_block_size; |
820 | 816 if(strstart==0|| strstart>=max_start) { |
821 if (lookahead == 0) break; // flush the current block | 817 // strstart == 0 is possible when wraparound on 16-bit machine |
822 } | 818 lookahead = (int)(strstart-max_start); |
823 | 819 strstart = (int)max_start; |
824 strstart += lookahead; | 820 |
825 lookahead = 0; | 821 flush_block_only(false); |
826 // Emit a stored block if pending_buf will be full: | 822 if(strm.avail_out==0) return NeedMore; |
827 max_start = block_start + max_block_size; | 823 |
828 | 824 } |
829 if (strstart == 0 || strstart >= max_start) { | 825 |
830 // strstart == 0 is possible when wraparound on 16-bit machine | 826 // Flush if we may have to slide, otherwise block_start may become |
831 lookahead = (int)(strstart - max_start); | 827 // negative and the data will be gone: |
832 strstart = (int)max_start; | 828 if(strstart-block_start >= w_size-MIN_LOOKAHEAD) { |
833 flush_block_only(false); | 829 flush_block_only(false); |
834 | 830 if(strm.avail_out==0) return NeedMore; |
835 if (strm.avail_out == 0) return NeedMore; | 831 } |
836 } | 832 } |
837 | 833 |
838 // Flush if we may have to slide, otherwise block_start may become | 834 flush_block_only(flush == Z_FINISH); |
839 // negative and the data will be gone: | 835 if(strm.avail_out==0) |
840 if (strstart - block_start >= w_size - MIN_LOOKAHEAD) { | 836 return (flush == Z_FINISH) ? FinishStarted : NeedMore; |
841 flush_block_only(false); | 837 |
842 | 838 return flush == Z_FINISH ? FinishDone : BlockDone; |
843 if (strm.avail_out == 0) return NeedMore; | 839 } |
844 } | 840 |
845 } | 841 // Send a stored block |
846 | 842 void _tr_stored_block(int buf, // input block |
847 flush_block_only(flush == Z_FINISH); | 843 int stored_len, // length of input block |
848 | 844 boolean eof // true if this is the last block for a file |
849 if (strm.avail_out == 0) | 845 ){ |
850 return (flush == Z_FINISH) ? FinishStarted : NeedMore; | 846 send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type |
851 | 847 copy_block(buf, stored_len, true); // with header |
852 return flush == Z_FINISH ? FinishDone : BlockDone; | 848 } |
853 } | 849 |
854 | 850 // Determine the best encoding for the current block: dynamic trees, static |
855 // Send a stored block | 851 // trees or store, and output the encoded block to the zip file. |
856 void _tr_stored_block(int buf, // input block | 852 void _tr_flush_block(int buf, // input block, or NULL if too old |
857 int stored_len, // length of input block | 853 int stored_len, // length of input block |
858 boolean eof // true if this is the last block for a file | 854 boolean eof // true if this is the last block for a file |
859 ) { | 855 ) { |
860 send_bits((STORED_BLOCK << 1) + (eof ? 1 : 0), 3); // send block type | 856 int opt_lenb, static_lenb;// opt_len and static_len in bytes |
861 copy_block(buf, stored_len, true); // with header | 857 int max_blindex = 0; // index of last bit length code of non zero freq |
862 } | 858 |
863 | 859 // Build the Huffman trees unless a stored block is forced |
864 // Determine the best encoding for the current block: dynamic trees, static | 860 if(level > 0) { |
865 // trees or store, and output the encoded block to the zip file. | 861 // Check if the file is ascii or binary |
866 void _tr_flush_block(int buf, // input block, or NULL if too old | 862 if(data_type == Z_UNKNOWN) set_data_type(); |
867 int stored_len, // length of input block | 863 |
868 boolean eof // true if this is the last block for a file | 864 // Construct the literal and distance trees |
869 ) { | 865 l_desc.build_tree(this); |
870 int opt_lenb, static_lenb;// opt_len and static_len in bytes | 866 |
871 int max_blindex = 0; // index of last bit length code of non zero freq | 867 d_desc.build_tree(this); |
872 | 868 |
873 // Build the Huffman trees unless a stored block is forced | 869 // At this point, opt_len and static_len are the total bit lengths of |
874 if (level > 0) { | 870 // the compressed block data, excluding the tree representations. |
875 // Check if the file is ascii or binary | 871 |
876 if (data_type == Z_UNKNOWN) set_data_type(); | 872 // Build the bit length tree for the above two trees, and get the index |
877 | 873 // in bl_order of the last bit length code to send. |
878 // Construct the literal and distance trees | 874 max_blindex=build_bl_tree(); |
879 l_desc.build_tree(this); | 875 |
880 d_desc.build_tree(this); | 876 // Determine the best encoding. Compute first the block length in bytes |
881 // At this point, opt_len and static_len are the total bit lengths of | 877 opt_lenb=(opt_len+3+7)>>>3; |
882 // the compressed block data, excluding the tree representations. | 878 static_lenb=(static_len+3+7)>>>3; |
883 // Build the bit length tree for the above two trees, and get the index | 879 |
884 // in bl_order of the last bit length code to send. | 880 if(static_lenb<=opt_lenb) opt_lenb=static_lenb; |
885 max_blindex = build_bl_tree(); | 881 } |
886 // Determine the best encoding. Compute first the block length in bytes | 882 else { |
887 opt_lenb = (opt_len + 3 + 7) >>> 3; | 883 opt_lenb=static_lenb=stored_len+5; // force a stored block |
888 static_lenb = (static_len + 3 + 7) >>> 3; | 884 } |
889 | 885 |
890 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | 886 if(stored_len+4<=opt_lenb && buf != -1){ |
891 } | 887 // 4: two words for the lengths |
892 else { | 888 // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
893 opt_lenb = static_lenb = stored_len + 5; // force a stored block | 889 // Otherwise we can't have processed more than WSIZE input bytes since |
894 } | 890 // the last block flush, because compression would have been |
895 | 891 // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
896 if (stored_len + 4 <= opt_lenb && buf != -1) { | 892 // transform a block into a stored block. |
897 // 4: two words for the lengths | 893 _tr_stored_block(buf, stored_len, eof); |
898 // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | 894 } |
899 // Otherwise we can't have processed more than WSIZE input bytes since | 895 else if(static_lenb == opt_lenb){ |
900 // the last block flush, because compression would have been | 896 send_bits((STATIC_TREES<<1)+(eof?1:0), 3); |
901 // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | 897 compress_block(StaticTree.static_ltree, StaticTree.static_dtree); |
902 // transform a block into a stored block. | 898 } |
903 _tr_stored_block(buf, stored_len, eof); | 899 else{ |
904 } | 900 send_bits((DYN_TREES<<1)+(eof?1:0), 3); |
905 else if (static_lenb == opt_lenb) { | 901 send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1); |
906 send_bits((STATIC_TREES << 1) + (eof ? 1 : 0), 3); | 902 compress_block(dyn_ltree, dyn_dtree); |
907 compress_block(StaticTree.static_ltree, StaticTree.static_dtree); | 903 } |
908 } | 904 |
909 else { | 905 // The above check is made mod 2^32, for files larger than 512 MB |
910 send_bits((DYN_TREES << 1) + (eof ? 1 : 0), 3); | 906 // and uLong implemented on 32 bits. |
911 send_all_trees(l_desc.max_code + 1, d_desc.max_code + 1, max_blindex + 1); | 907 |
912 compress_block(dyn_ltree, dyn_dtree); | 908 init_block(); |
913 } | 909 |
914 | 910 if(eof){ |
915 // The above check is made mod 2^32, for files larger than 512 MB | 911 bi_windup(); |
916 // and uLong implemented on 32 bits. | 912 } |
917 init_block(); | 913 } |
918 | 914 |
919 if (eof) { | 915 // Fill the window when the lookahead becomes insufficient. |
920 bi_windup(); | 916 // Updates strstart and lookahead. |
921 } | 917 // |
922 } | 918 // IN assertion: lookahead < MIN_LOOKAHEAD |
923 | 919 // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
924 // Fill the window when the lookahead becomes insufficient. | 920 // At least one byte has been read, or avail_in == 0; reads are |
925 // Updates strstart and lookahead. | 921 // performed for at least two bytes (required for the zip translate_eol |
922 // option -- not supported here). | |
923 void fill_window(){ | |
924 int n, m; | |
925 int p; | |
926 int more; // Amount of free space at the end of the window. | |
927 | |
928 do{ | |
929 more = (window_size-lookahead-strstart); | |
930 | |
931 // Deal with !@#$% 64K limit: | |
932 if(more==0 && strstart==0 && lookahead==0){ | |
933 more = w_size; | |
934 } | |
935 else if(more==-1) { | |
936 // Very unlikely, but possible on 16 bit machine if strstart == 0 | |
937 // and lookahead == 1 (input done one byte at time) | |
938 more--; | |
939 | |
940 // If the window is almost full and there is insufficient lookahead, | |
941 // move the upper half to the lower one to make room in the upper half. | |
942 } | |
943 else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) { | |
944 System.arraycopy(window, w_size, window, 0, w_size); | |
945 match_start-=w_size; | |
946 strstart-=w_size; // we now have strstart >= MAX_DIST | |
947 block_start-=w_size; | |
948 | |
949 // Slide the hash table (could be avoided with 32 bit values | |
950 // at the expense of memory usage). We slide even when level == 0 | |
951 // to keep the hash table consistent if we switch back to level > 0 | |
952 // later. (Using level 0 permanently is not an optimal usage of | |
953 // zlib, so we don't care about this pathological case.) | |
954 | |
955 n = hash_size; | |
956 p=n; | |
957 do { | |
958 m = (head[--p]&0xffff); | |
959 head[p]=(m>=w_size ? (short)(m-w_size) : 0); | |
960 } | |
961 while (--n != 0); | |
962 | |
963 n = w_size; | |
964 p = n; | |
965 do { | |
966 m = (prev[--p]&0xffff); | |
967 prev[p] = (m >= w_size ? (short)(m-w_size) : 0); | |
968 // If n is not on any hash chain, prev[n] is garbage but | |
969 // its value will never be used. | |
970 } | |
971 while (--n!=0); | |
972 more += w_size; | |
973 } | |
974 | |
975 if (strm.avail_in == 0) return; | |
976 | |
977 // If there was no sliding: | |
978 // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
979 // more == window_size - lookahead - strstart | |
980 // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
981 // => more >= window_size - 2*WSIZE + 2 | |
982 // In the BIG_MEM or MMAP case (not yet supported), | |
983 // window_size == input_size + MIN_LOOKAHEAD && | |
984 // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
985 // Otherwise, window_size == 2*WSIZE so more >= 2. | |
986 // If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
987 | |
988 n = strm.read_buf(window, strstart + lookahead, more); | |
989 lookahead += n; | |
990 | |
991 // Initialize the hash value now that we have some input: | |
992 if(lookahead >= MIN_MATCH) { | |
993 ins_h = window[strstart]&0xff; | |
994 ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; | |
995 } | |
996 // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
997 // but this is not important since only literal bytes will be emitted. | |
998 } | |
999 while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0); | |
1000 } | |
1001 | |
1002 // Compress as much as possible from the input stream, return the current | |
1003 // block state. | |
1004 // This function does not perform lazy evaluation of matches and inserts | |
1005 // new strings in the dictionary only for unmatched strings or for short | |
1006 // matches. It is used only for the fast compression options. | |
1007 int deflate_fast(int flush){ | |
1008 // short hash_head = 0; // head of the hash chain | |
1009 int hash_head = 0; // head of the hash chain | |
1010 boolean bflush; // set if current block must be flushed | |
1011 | |
1012 while(true){ | |
1013 // Make sure that we always have enough lookahead, except | |
1014 // at the end of the input file. We need MAX_MATCH bytes | |
1015 // for the next match, plus MIN_MATCH bytes to insert the | |
1016 // string following the next match. | |
1017 if(lookahead < MIN_LOOKAHEAD){ | |
1018 fill_window(); | |
1019 if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){ | |
1020 return NeedMore; | |
1021 } | |
1022 if(lookahead == 0) break; // flush the current block | |
1023 } | |
1024 | |
1025 // Insert the string window[strstart .. strstart+2] in the | |
1026 // dictionary, and set hash_head to the head of the hash chain: | |
1027 if(lookahead >= MIN_MATCH){ | |
1028 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1029 | |
1030 // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1031 hash_head=(head[ins_h]&0xffff); | |
1032 prev[strstart&w_mask]=head[ins_h]; | |
1033 head[ins_h]=(short)strstart; | |
1034 } | |
1035 | |
1036 // Find the longest match, discarding those <= prev_length. | |
1037 // At this point we have always match_length < MIN_MATCH | |
1038 | |
1039 if(hash_head!=0L && | |
1040 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD | |
1041 ){ | |
1042 // To simplify the code, we prevent matches with the string | |
1043 // of window index 0 (in particular we have to avoid a match | |
1044 // of the string with itself at the start of the input file). | |
1045 if(strategy != Z_HUFFMAN_ONLY){ | |
1046 match_length=longest_match (hash_head); | |
1047 } | |
1048 // longest_match() sets match_start | |
1049 } | |
1050 if(match_length>=MIN_MATCH){ | |
1051 // check_match(strstart, match_start, match_length); | |
1052 | |
1053 bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH); | |
1054 | |
1055 lookahead -= match_length; | |
1056 | |
1057 // Insert new strings in the hash table only if the match length | |
1058 // is not too large. This saves time but degrades compression. | |
1059 if(match_length <= max_lazy_match && | |
1060 lookahead >= MIN_MATCH) { | |
1061 match_length--; // string at strstart already in hash table | |
1062 do{ | |
1063 strstart++; | |
1064 | |
1065 ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1066 // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1067 hash_head=(head[ins_h]&0xffff); | |
1068 prev[strstart&w_mask]=head[ins_h]; | |
1069 head[ins_h]=(short)strstart; | |
1070 | |
1071 // strstart never exceeds WSIZE-MAX_MATCH, so there are | |
1072 // always MIN_MATCH bytes ahead. | |
1073 } | |
1074 while (--match_length != 0); | |
1075 strstart++; | |
1076 } | |
1077 else{ | |
1078 strstart += match_length; | |
1079 match_length = 0; | |
1080 ins_h = window[strstart]&0xff; | |
1081 | |
1082 ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; | |
1083 // If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
1084 // matter since it will be recomputed at next deflate call. | |
1085 } | |
1086 } | |
1087 else { | |
1088 // No match, output a literal byte | |
1089 | |
1090 bflush=_tr_tally(0, window[strstart]&0xff); | |
1091 lookahead--; | |
1092 strstart++; | |
1093 } | |
1094 if (bflush){ | |
1095 | |
1096 flush_block_only(false); | |
1097 if(strm.avail_out==0) return NeedMore; | |
1098 } | |
1099 } | |
1100 | |
1101 flush_block_only(flush == Z_FINISH); | |
1102 if(strm.avail_out==0){ | |
1103 if(flush == Z_FINISH) return FinishStarted; | |
1104 else return NeedMore; | |
1105 } | |
1106 return flush==Z_FINISH ? FinishDone : BlockDone; | |
1107 } | |
1108 | |
1109 // Same as above, but achieves better compression. We use a lazy | |
1110 // evaluation for matches: a match is finally adopted only if there is | |
1111 // no better match at the next window position. | |
1112 int deflate_slow(int flush){ | |
1113 // short hash_head = 0; // head of hash chain | |
1114 int hash_head = 0; // head of hash chain | |
1115 boolean bflush; // set if current block must be flushed | |
1116 | |
1117 // Process the input block. | |
1118 while(true){ | |
1119 // Make sure that we always have enough lookahead, except | |
1120 // at the end of the input file. We need MAX_MATCH bytes | |
1121 // for the next match, plus MIN_MATCH bytes to insert the | |
1122 // string following the next match. | |
1123 | |
1124 if (lookahead < MIN_LOOKAHEAD) { | |
1125 fill_window(); | |
1126 if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1127 return NeedMore; | |
1128 } | |
1129 if(lookahead == 0) break; // flush the current block | |
1130 } | |
1131 | |
1132 // Insert the string window[strstart .. strstart+2] in the | |
1133 // dictionary, and set hash_head to the head of the hash chain: | |
1134 | |
1135 if(lookahead >= MIN_MATCH) { | |
1136 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask; | |
1137 // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1138 hash_head=(head[ins_h]&0xffff); | |
1139 prev[strstart&w_mask]=head[ins_h]; | |
1140 head[ins_h]=(short)strstart; | |
1141 } | |
1142 | |
1143 // Find the longest match, discarding those <= prev_length. | |
1144 prev_length = match_length; prev_match = match_start; | |
1145 match_length = MIN_MATCH-1; | |
1146 | |
1147 if (hash_head != 0 && prev_length < max_lazy_match && | |
1148 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD | |
1149 ){ | |
1150 // To simplify the code, we prevent matches with the string | |
1151 // of window index 0 (in particular we have to avoid a match | |
1152 // of the string with itself at the start of the input file). | |
1153 | |
1154 if(strategy != Z_HUFFMAN_ONLY) { | |
1155 match_length = longest_match(hash_head); | |
1156 } | |
1157 // longest_match() sets match_start | |
1158 | |
1159 if (match_length <= 5 && (strategy == Z_FILTERED || | |
1160 (match_length == MIN_MATCH && | |
1161 strstart - match_start > 4096))) { | |
1162 | |
1163 // If prev_match is also MIN_MATCH, match_start is garbage | |
1164 // but we will ignore the current match anyway. | |
1165 match_length = MIN_MATCH-1; | |
1166 } | |
1167 } | |
1168 | |
1169 // If there was a match at the previous step and the current | |
1170 // match is not better, output the previous match: | |
1171 if(prev_length >= MIN_MATCH && match_length <= prev_length) { | |
1172 int max_insert = strstart + lookahead - MIN_MATCH; | |
1173 // Do not insert strings in hash table beyond this. | |
1174 | |
1175 // check_match(strstart-1, prev_match, prev_length); | |
1176 | |
1177 bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH); | |
1178 | |
1179 // Insert in hash table all strings up to the end of the match. | |
1180 // strstart-1 and strstart are already inserted. If there is not | |
1181 // enough lookahead, the last two strings are not inserted in | |
1182 // the hash table. | |
1183 lookahead -= prev_length-1; | |
1184 prev_length -= 2; | |
1185 do{ | |
1186 if(++strstart <= max_insert) { | |
1187 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1188 //prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1189 hash_head=(head[ins_h]&0xffff); | |
1190 prev[strstart&w_mask]=head[ins_h]; | |
1191 head[ins_h]=(short)strstart; | |
1192 } | |
1193 } | |
1194 while(--prev_length != 0); | |
1195 match_available = 0; | |
1196 match_length = MIN_MATCH-1; | |
1197 strstart++; | |
1198 | |
1199 if (bflush){ | |
1200 flush_block_only(false); | |
1201 if(strm.avail_out==0) return NeedMore; | |
1202 } | |
1203 } else if (match_available!=0) { | |
1204 | |
1205 // If there was no match at the previous position, output a | |
1206 // single literal. If there was a match but the current match | |
1207 // is longer, truncate the previous match to a single literal. | |
1208 | |
1209 bflush=_tr_tally(0, window[strstart-1]&0xff); | |
1210 | |
1211 if (bflush) { | |
1212 flush_block_only(false); | |
1213 } | |
1214 strstart++; | |
1215 lookahead--; | |
1216 if(strm.avail_out == 0) return NeedMore; | |
1217 } else { | |
1218 // There is no previous match to compare with, wait for | |
1219 // the next step to decide. | |
1220 | |
1221 match_available = 1; | |
1222 strstart++; | |
1223 lookahead--; | |
1224 } | |
1225 } | |
1226 | |
1227 if(match_available!=0) { | |
1228 bflush=_tr_tally(0, window[strstart-1]&0xff); | |
1229 match_available = 0; | |
1230 } | |
1231 flush_block_only(flush == Z_FINISH); | |
1232 | |
1233 if(strm.avail_out==0){ | |
1234 if(flush == Z_FINISH) return FinishStarted; | |
1235 else return NeedMore; | |
1236 } | |
1237 | |
1238 return flush == Z_FINISH ? FinishDone : BlockDone; | |
1239 } | |
1240 | |
1241 int longest_match(int cur_match){ | |
1242 int chain_length = max_chain_length; // max hash chain length | |
1243 int scan = strstart; // current string | |
1244 int match; // matched string | |
1245 int len; // length of current match | |
1246 int best_len = prev_length; // best match length so far | |
1247 int limit = strstart>(w_size-MIN_LOOKAHEAD) ? | |
1248 strstart-(w_size-MIN_LOOKAHEAD) : 0; | |
1249 int nice_match=this.nice_match; | |
1250 | |
1251 // Stop when cur_match becomes <= limit. To simplify the code, | |
1252 // we prevent matches with the string of window index 0. | |
1253 | |
1254 int wmask = w_mask; | |
1255 | |
1256 int strend = strstart + MAX_MATCH; | |
1257 byte scan_end1 = window[scan+best_len-1]; | |
1258 byte scan_end = window[scan+best_len]; | |
1259 | |
1260 // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1261 // It is easy to get rid of this optimization if necessary. | |
1262 | |
1263 // Do not waste too much time if we already have a good match: | |
1264 if (prev_length >= good_match) { | |
1265 chain_length >>= 2; | |
1266 } | |
1267 | |
1268 // Do not look for matches beyond the end of the input. This is necessary | |
1269 // to make deflate deterministic. | |
1270 if (nice_match > lookahead) nice_match = lookahead; | |
1271 | |
1272 do { | |
1273 match = cur_match; | |
1274 | |
1275 // Skip to next match if the match length cannot increase | |
1276 // or if the match length is less than 2: | |
1277 if (window[match+best_len] != scan_end || | |
1278 window[match+best_len-1] != scan_end1 || | |
1279 window[match] != window[scan] || | |
1280 window[++match] != window[scan+1]) continue; | |
1281 | |
1282 // The check at best_len-1 can be removed because it will be made | |
1283 // again later. (This heuristic is not always a win.) | |
1284 // It is not necessary to compare scan[2] and match[2] since they | |
1285 // are always equal when the other bytes match, given that | |
1286 // the hash keys are equal and that HASH_BITS >= 8. | |
1287 scan += 2; match++; | |
1288 | |
1289 // We check for insufficient lookahead only every 8th comparison; | |
1290 // the 256th check will be made at strstart+258. | |
1291 do { | |
1292 } while (window[++scan] == window[++match] && | |
1293 window[++scan] == window[++match] && | |
1294 window[++scan] == window[++match] && | |
1295 window[++scan] == window[++match] && | |
1296 window[++scan] == window[++match] && | |
1297 window[++scan] == window[++match] && | |
1298 window[++scan] == window[++match] && | |
1299 window[++scan] == window[++match] && | |
1300 scan < strend); | |
1301 | |
1302 len = MAX_MATCH - (int)(strend - scan); | |
1303 scan = strend - MAX_MATCH; | |
1304 | |
1305 if(len>best_len) { | |
1306 match_start = cur_match; | |
1307 best_len = len; | |
1308 if (len >= nice_match) break; | |
1309 scan_end1 = window[scan+best_len-1]; | |
1310 scan_end = window[scan+best_len]; | |
1311 } | |
1312 | |
1313 } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit | |
1314 && --chain_length != 0); | |
1315 | |
1316 if (best_len <= lookahead) return best_len; | |
1317 return lookahead; | |
1318 } | |
1319 | |
1320 int deflateInit(int level, int bits, int memlevel){ | |
1321 return deflateInit(level, Z_DEFLATED, bits, memlevel, | |
1322 Z_DEFAULT_STRATEGY); | |
1323 } | |
1324 | |
1325 int deflateInit(int level, int bits){ | |
1326 return deflateInit(level, Z_DEFLATED, bits, DEF_MEM_LEVEL, | |
1327 Z_DEFAULT_STRATEGY); | |
1328 } | |
1329 int deflateInit(int level){ | |
1330 return deflateInit(level, MAX_WBITS); | |
1331 } | |
1332 private int deflateInit(int level, int method, int windowBits, | |
1333 int memLevel, int strategy){ | |
1334 int wrap = 1; | |
1335 // byte[] my_version=ZLIB_VERSION; | |
1336 | |
926 // | 1337 // |
927 // IN assertion: lookahead < MIN_LOOKAHEAD | 1338 // if (version == null || version[0] != my_version[0] |
928 // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | 1339 // || stream_size != sizeof(z_stream)) { |
929 // At least one byte has been read, or avail_in == 0; reads are | 1340 // return Z_VERSION_ERROR; |
930 // performed for at least two bytes (required for the zip translate_eol | 1341 // } |
931 // option -- not supported here). | 1342 |
932 void fill_window() { | 1343 strm.msg = null; |
933 int n, m; | 1344 |
934 int p; | 1345 if (level == Z_DEFAULT_COMPRESSION) level = 6; |
935 int more; // Amount of free space at the end of the window. | 1346 |
936 | 1347 if (windowBits < 0) { // undocumented feature: suppress zlib header |
937 do { | 1348 wrap = 0; |
938 more = (window_size - lookahead - strstart); | 1349 windowBits = -windowBits; |
939 | 1350 } |
940 // Deal with !@#$% 64K limit: | 1351 else if(windowBits > 15){ |
941 if (more == 0 && strstart == 0 && lookahead == 0) { | 1352 wrap = 2; |
942 more = w_size; | 1353 windowBits -= 16; |
943 } | 1354 strm.adler=new CRC32(); |
944 else if (more == -1) { | 1355 } |
945 // Very unlikely, but possible on 16 bit machine if strstart == 0 | 1356 |
946 // and lookahead == 1 (input done one byte at time) | 1357 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || |
947 more--; | 1358 method != Z_DEFLATED || |
948 // If the window is almost full and there is insufficient lookahead, | 1359 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || |
949 // move the upper half to the lower one to make room in the upper half. | 1360 strategy < 0 || strategy > Z_HUFFMAN_ONLY) { |
950 } | 1361 return Z_STREAM_ERROR; |
951 else if (strstart >= w_size + w_size - MIN_LOOKAHEAD) { | 1362 } |
952 System.arraycopy(window, w_size, window, 0, w_size); | 1363 |
953 match_start -= w_size; | 1364 strm.dstate = (Deflate)this; |
954 strstart -= w_size; // we now have strstart >= MAX_DIST | 1365 |
955 block_start -= w_size; | 1366 this.wrap = wrap; |
956 // Slide the hash table (could be avoided with 32 bit values | 1367 w_bits = windowBits; |
957 // at the expense of memory usage). We slide even when level == 0 | 1368 w_size = 1 << w_bits; |
958 // to keep the hash table consistent if we switch back to level > 0 | 1369 w_mask = w_size - 1; |
959 // later. (Using level 0 permanently is not an optimal usage of | 1370 |
960 // zlib, so we don't care about this pathological case.) | 1371 hash_bits = memLevel + 7; |
961 n = hash_size; | 1372 hash_size = 1 << hash_bits; |
962 p = n; | 1373 hash_mask = hash_size - 1; |
963 | 1374 hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH); |
964 do { | 1375 |
965 m = (head[--p] & 0xffff); | 1376 window = new byte[w_size*2]; |
966 head[p] = (m >= w_size ? (short)(m - w_size) : 0); | 1377 prev = new short[w_size]; |
967 } | 1378 head = new short[hash_size]; |
968 while (--n != 0); | 1379 |
969 | 1380 lit_bufsize = 1 << (memLevel + 6); // 16K elements by default |
970 n = w_size; | 1381 |
971 p = n; | 1382 // We overlay pending_buf and d_buf+l_buf. This works since the average |
972 | 1383 // output size for (length,distance) codes is <= 24 bits. |
973 do { | 1384 pending_buf = new byte[lit_bufsize*3]; |
974 m = (prev[--p] & 0xffff); | 1385 pending_buf_size = lit_bufsize*3; |
975 prev[p] = (m >= w_size ? (short)(m - w_size) : 0); | 1386 |
976 // If n is not on any hash chain, prev[n] is garbage but | 1387 d_buf = lit_bufsize; |
977 // its value will never be used. | 1388 l_buf = new byte[lit_bufsize]; |
978 } | 1389 |
979 while (--n != 0); | 1390 this.level = level; |
980 | 1391 |
981 more += w_size; | 1392 this.strategy = strategy; |
982 } | 1393 this.method = (byte)method; |
983 | 1394 |
984 if (strm.avail_in == 0) return; | 1395 return deflateReset(); |
985 | 1396 } |
986 // If there was no sliding: | 1397 |
987 // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | 1398 int deflateReset(){ |
988 // more == window_size - lookahead - strstart | 1399 strm.total_in = strm.total_out = 0; |
989 // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | 1400 strm.msg = null; // |
990 // => more >= window_size - 2*WSIZE + 2 | 1401 strm.data_type = Z_UNKNOWN; |
991 // In the BIG_MEM or MMAP case (not yet supported), | 1402 |
992 // window_size == input_size + MIN_LOOKAHEAD && | 1403 pending = 0; |
993 // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | 1404 pending_out = 0; |
994 // Otherwise, window_size == 2*WSIZE so more >= 2. | 1405 |
995 // If there was sliding, more >= WSIZE. So in all cases, more >= 2. | 1406 if(wrap < 0){ |
996 n = strm.read_buf(window, strstart + lookahead, more); | 1407 wrap = -wrap; |
997 lookahead += n; | 1408 } |
998 | 1409 status = (wrap==0) ? BUSY_STATE : INIT_STATE; |
999 // Initialize the hash value now that we have some input: | 1410 strm.adler.reset(); |
1000 if (lookahead >= MIN_MATCH) { | 1411 |
1001 ins_h = window[strstart] & 0xff; | 1412 last_flush = Z_NO_FLUSH; |
1002 ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask; | 1413 |
1003 } | 1414 tr_init(); |
1004 | 1415 lm_init(); |
1005 // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | 1416 return Z_OK; |
1006 // but this is not important since only literal bytes will be emitted. | 1417 } |
1007 } | 1418 |
1008 while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0); | 1419 int deflateEnd(){ |
1009 } | 1420 if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){ |
1010 | 1421 return Z_STREAM_ERROR; |
1011 // Compress as much as possible from the input stream, return the current | 1422 } |
1012 // block state. | 1423 // Deallocate in reverse order of allocations: |
1013 // This function does not perform lazy evaluation of matches and inserts | 1424 pending_buf=null; |
1014 // new strings in the dictionary only for unmatched strings or for short | 1425 l_buf=null; |
1015 // matches. It is used only for the fast compression options. | 1426 head=null; |
1016 int deflate_fast(int flush) { | 1427 prev=null; |
1017 // short hash_head = 0; // head of the hash chain | 1428 window=null; |
1018 int hash_head = 0; // head of the hash chain | 1429 // free |
1019 boolean bflush; // set if current block must be flushed | 1430 // dstate=null; |
1020 | 1431 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
1021 while (true) { | 1432 } |
1022 // Make sure that we always have enough lookahead, except | 1433 |
1023 // at the end of the input file. We need MAX_MATCH bytes | 1434 int deflateParams(int _level, int _strategy){ |
1024 // for the next match, plus MIN_MATCH bytes to insert the | 1435 int err=Z_OK; |
1025 // string following the next match. | 1436 |
1026 if (lookahead < MIN_LOOKAHEAD) { | 1437 if(_level == Z_DEFAULT_COMPRESSION){ |
1027 fill_window(); | 1438 _level = 6; |
1028 | 1439 } |
1029 if (lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | 1440 if(_level < 0 || _level > 9 || |
1030 return NeedMore; | 1441 _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { |
1031 } | 1442 return Z_STREAM_ERROR; |
1032 | 1443 } |
1033 if (lookahead == 0) break; // flush the current block | 1444 |
1034 } | 1445 if(config_table[level].func!=config_table[_level].func && |
1035 | 1446 strm.total_in != 0) { |
1036 // Insert the string window[strstart .. strstart+2] in the | 1447 // Flush the last buffer: |
1037 // dictionary, and set hash_head to the head of the hash chain: | 1448 err = strm.deflate(Z_PARTIAL_FLUSH); |
1038 if (lookahead >= MIN_MATCH) { | 1449 } |
1039 ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 1450 |
1040 // prev[strstart&w_mask]=hash_head=head[ins_h]; | 1451 if(level != _level) { |
1041 hash_head = (head[ins_h] & 0xffff); | 1452 level = _level; |
1042 prev[strstart & w_mask] = head[ins_h]; | 1453 max_lazy_match = config_table[level].max_lazy; |
1043 head[ins_h] = (short)strstart; | 1454 good_match = config_table[level].good_length; |
1044 } | 1455 nice_match = config_table[level].nice_length; |
1045 | 1456 max_chain_length = config_table[level].max_chain; |
1046 // Find the longest match, discarding those <= prev_length. | 1457 } |
1047 // At this point we have always match_length < MIN_MATCH | 1458 strategy = _strategy; |
1048 if (hash_head != 0L && | 1459 return err; |
1049 ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD | 1460 } |
1050 ) { | 1461 |
1051 // To simplify the code, we prevent matches with the string | 1462 int deflateSetDictionary (byte[] dictionary, int dictLength){ |
1052 // of window index 0 (in particular we have to avoid a match | 1463 int length = dictLength; |
1053 // of the string with itself at the start of the input file). | 1464 int index=0; |
1054 if (strategy != Z_HUFFMAN_ONLY) { | 1465 |
1055 match_length = longest_match(hash_head); | 1466 if(dictionary == null || status != INIT_STATE) |
1056 } | 1467 return Z_STREAM_ERROR; |
1057 | 1468 |
1058 // longest_match() sets match_start | 1469 strm.adler.update(dictionary, 0, dictLength); |
1059 } | 1470 |
1060 | 1471 if(length < MIN_MATCH) return Z_OK; |
1061 if (match_length >= MIN_MATCH) { | 1472 if(length > w_size-MIN_LOOKAHEAD){ |
1062 // check_match(strstart, match_start, match_length); | 1473 length = w_size-MIN_LOOKAHEAD; |
1063 bflush = _tr_tally(strstart - match_start, match_length - MIN_MATCH); | 1474 index=dictLength-length; // use the tail of the dictionary |
1064 lookahead -= match_length; | 1475 } |
1065 | 1476 System.arraycopy(dictionary, index, window, 0, length); |
1066 // Insert new strings in the hash table only if the match length | 1477 strstart = length; |
1067 // is not too large. This saves time but degrades compression. | 1478 block_start = length; |
1068 if (match_length <= max_lazy_match && | 1479 |
1069 lookahead >= MIN_MATCH) { | 1480 // Insert all strings in the hash table (except for the last two bytes). |
1070 match_length--; // string at strstart already in hash table | 1481 // s->lookahead stays null, so s->ins_h will be recomputed at the next |
1071 | 1482 // call of fill_window. |
1072 do { | 1483 |
1073 strstart++; | 1484 ins_h = window[0]&0xff; |
1074 ins_h = ((ins_h << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 1485 ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask; |
1075 // prev[strstart&w_mask]=hash_head=head[ins_h]; | 1486 |
1076 hash_head = (head[ins_h] & 0xffff); | 1487 for(int n=0; n<=length-MIN_MATCH; n++){ |
1077 prev[strstart & w_mask] = head[ins_h]; | 1488 ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask; |
1078 head[ins_h] = (short)strstart; | 1489 prev[n&w_mask]=head[ins_h]; |
1079 // strstart never exceeds WSIZE-MAX_MATCH, so there are | 1490 head[ins_h]=(short)n; |
1080 // always MIN_MATCH bytes ahead. | 1491 } |
1081 } | 1492 return Z_OK; |
1082 while (--match_length != 0); | 1493 } |
1083 | 1494 |
1084 strstart++; | 1495 int deflate(int flush){ |
1085 } | 1496 int old_flush; |
1086 else { | 1497 |
1087 strstart += match_length; | 1498 if(flush>Z_FINISH || flush<0){ |
1088 match_length = 0; | 1499 return Z_STREAM_ERROR; |
1089 ins_h = window[strstart] & 0xff; | 1500 } |
1090 ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask; | 1501 |
1091 // If lookahead < MIN_MATCH, ins_h is garbage, but it does not | 1502 if(strm.next_out == null || |
1092 // matter since it will be recomputed at next deflate call. | 1503 (strm.next_in == null && strm.avail_in != 0) || |
1093 } | 1504 (status == FINISH_STATE && flush != Z_FINISH)) { |
1094 } | 1505 strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)]; |
1095 else { | 1506 return Z_STREAM_ERROR; |
1096 // No match, output a literal byte | 1507 } |
1097 bflush = _tr_tally(0, window[strstart] & 0xff); | 1508 if(strm.avail_out == 0){ |
1098 lookahead--; | 1509 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; |
1099 strstart++; | 1510 return Z_BUF_ERROR; |
1100 } | 1511 } |
1101 | 1512 |
1102 if (bflush) { | 1513 old_flush = last_flush; |
1103 flush_block_only(false); | 1514 last_flush = flush; |
1104 | 1515 |
1105 if (strm.avail_out == 0) return NeedMore; | 1516 // Write the zlib header |
1106 } | 1517 if(status == INIT_STATE) { |
1107 } | 1518 if(wrap == 2){ |
1108 | 1519 getGZIPHeader().put(this); |
1109 flush_block_only(flush == Z_FINISH); | 1520 status=BUSY_STATE; |
1110 | 1521 strm.adler.reset(); |
1111 if (strm.avail_out == 0) { | 1522 } |
1112 if (flush == Z_FINISH) return FinishStarted; | 1523 else{ |
1113 else return NeedMore; | 1524 int header = (Z_DEFLATED+((w_bits-8)<<4))<<8; |
1114 } | 1525 int level_flags=((level-1)&0xff)>>1; |
1115 | 1526 |
1116 return flush == Z_FINISH ? FinishDone : BlockDone; | 1527 if(level_flags>3) level_flags=3; |
1117 } | 1528 header |= (level_flags<<6); |
1118 | 1529 if(strstart!=0) header |= PRESET_DICT; |
1119 // Same as above, but achieves better compression. We use a lazy | 1530 header+=31-(header % 31); |
1120 // evaluation for matches: a match is finally adopted only if there is | 1531 |
1121 // no better match at the next window position. | 1532 status=BUSY_STATE; |
1122 int deflate_slow(int flush) { | 1533 putShortMSB(header); |
1123 // short hash_head = 0; // head of hash chain | 1534 |
1124 int hash_head = 0; // head of hash chain | 1535 |
1125 boolean bflush; // set if current block must be flushed | 1536 // Save the adler32 of the preset dictionary: |
1126 | 1537 if(strstart!=0){ |
1127 // Process the input block. | 1538 long adler=strm.adler.getValue(); |
1128 while (true) { | 1539 putShortMSB((int)(adler>>>16)); |
1129 // Make sure that we always have enough lookahead, except | 1540 putShortMSB((int)(adler&0xffff)); |
1130 // at the end of the input file. We need MAX_MATCH bytes | 1541 } |
1131 // for the next match, plus MIN_MATCH bytes to insert the | 1542 strm.adler.reset(); |
1132 // string following the next match. | 1543 } |
1133 if (lookahead < MIN_LOOKAHEAD) { | 1544 } |
1134 fill_window(); | 1545 |
1135 | 1546 // Flush as much pending output as possible |
1136 if (lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | 1547 if(pending != 0) { |
1137 return NeedMore; | 1548 strm.flush_pending(); |
1138 } | 1549 if(strm.avail_out == 0) { |
1139 | 1550 // Since avail_out is 0, deflate will be called again with |
1140 if (lookahead == 0) break; // flush the current block | 1551 // more output space, but possibly with both pending and |
1141 } | 1552 // avail_in equal to zero. There won't be anything to do, |
1142 | 1553 // but this is not an error situation so make sure we |
1143 // Insert the string window[strstart .. strstart+2] in the | 1554 // return OK instead of BUF_ERROR at next call of deflate: |
1144 // dictionary, and set hash_head to the head of the hash chain: | 1555 last_flush = -1; |
1145 if (lookahead >= MIN_MATCH) { | 1556 return Z_OK; |
1146 ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 1557 } |
1147 // prev[strstart&w_mask]=hash_head=head[ins_h]; | 1558 |
1148 hash_head = (head[ins_h] & 0xffff); | 1559 // Make sure there is something to do and avoid duplicate consecutive |
1149 prev[strstart & w_mask] = head[ins_h]; | 1560 // flushes. For repeated and useless calls with Z_FINISH, we keep |
1150 head[ins_h] = (short)strstart; | 1561 // returning Z_STREAM_END instead of Z_BUFF_ERROR. |
1151 } | 1562 } |
1152 | 1563 else if(strm.avail_in==0 && flush <= old_flush && |
1153 // Find the longest match, discarding those <= prev_length. | 1564 flush != Z_FINISH) { |
1154 prev_length = match_length; prev_match = match_start; | 1565 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; |
1155 match_length = MIN_MATCH - 1; | 1566 return Z_BUF_ERROR; |
1156 | 1567 } |
1157 if (hash_head != 0 && prev_length < max_lazy_match && | 1568 |
1158 ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD | 1569 // User must not provide more input after the first FINISH: |
1159 ) { | 1570 if(status == FINISH_STATE && strm.avail_in != 0) { |
1160 // To simplify the code, we prevent matches with the string | 1571 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; |
1161 // of window index 0 (in particular we have to avoid a match | 1572 return Z_BUF_ERROR; |
1162 // of the string with itself at the start of the input file). | 1573 } |
1163 if (strategy != Z_HUFFMAN_ONLY) { | 1574 |
1164 match_length = longest_match(hash_head); | 1575 // Start a new block or continue the current one. |
1165 } | 1576 if(strm.avail_in!=0 || lookahead!=0 || |
1166 | 1577 (flush != Z_NO_FLUSH && status != FINISH_STATE)) { |
1167 // longest_match() sets match_start | 1578 int bstate=-1; |
1168 if (match_length <= 5 && (strategy == Z_FILTERED || | 1579 switch(config_table[level].func){ |
1169 (match_length == MIN_MATCH && | 1580 case STORED: |
1170 strstart - match_start > 4096))) { | 1581 bstate = deflate_stored(flush); |
1171 // If prev_match is also MIN_MATCH, match_start is garbage | 1582 break; |
1172 // but we will ignore the current match anyway. | 1583 case FAST: |
1173 match_length = MIN_MATCH - 1; | 1584 bstate = deflate_fast(flush); |
1174 } | 1585 break; |
1175 } | 1586 case SLOW: |
1176 | 1587 bstate = deflate_slow(flush); |
1177 // If there was a match at the previous step and the current | 1588 break; |
1178 // match is not better, output the previous match: | 1589 default: |
1179 if (prev_length >= MIN_MATCH && match_length <= prev_length) { | 1590 } |
1180 int max_insert = strstart + lookahead - MIN_MATCH; | 1591 |
1181 // Do not insert strings in hash table beyond this. | 1592 if (bstate==FinishStarted || bstate==FinishDone) { |
1182 // check_match(strstart-1, prev_match, prev_length); | 1593 status = FINISH_STATE; |
1183 bflush = _tr_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH); | 1594 } |
1184 // Insert in hash table all strings up to the end of the match. | 1595 if (bstate==NeedMore || bstate==FinishStarted) { |
1185 // strstart-1 and strstart are already inserted. If there is not | 1596 if(strm.avail_out == 0) { |
1186 // enough lookahead, the last two strings are not inserted in | 1597 last_flush = -1; // avoid BUF_ERROR next call, see above |
1187 // the hash table. | 1598 } |
1188 lookahead -= prev_length - 1; | 1599 return Z_OK; |
1189 prev_length -= 2; | 1600 // If flush != Z_NO_FLUSH && avail_out == 0, the next call |
1190 | 1601 // of deflate should use the same flush parameter to make sure |
1191 do { | 1602 // that the flush is complete. So we don't have to output an |
1192 if (++strstart <= max_insert) { | 1603 // empty block here, this will be done at next call. This also |
1193 ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 1604 // ensures that for a very small output buffer, we emit at most |
1194 //prev[strstart&w_mask]=hash_head=head[ins_h]; | 1605 // one empty block. |
1195 hash_head = (head[ins_h] & 0xffff); | 1606 } |
1196 prev[strstart & w_mask] = head[ins_h]; | 1607 |
1197 head[ins_h] = (short)strstart; | 1608 if (bstate==BlockDone) { |
1198 } | 1609 if(flush == Z_PARTIAL_FLUSH) { |
1199 } | 1610 _tr_align(); |
1200 while (--prev_length != 0); | 1611 } |
1201 | 1612 else { // FULL_FLUSH or SYNC_FLUSH |
1202 match_available = 0; | 1613 _tr_stored_block(0, 0, false); |
1203 match_length = MIN_MATCH - 1; | 1614 // For a full flush, this empty block will be recognized |
1204 strstart++; | 1615 // as a special marker by inflate_sync(). |
1205 | 1616 if(flush == Z_FULL_FLUSH) { |
1206 if (bflush) { | 1617 //state.head[s.hash_size-1]=0; |
1207 flush_block_only(false); | 1618 for(int i=0; i<hash_size/*-1*/; i++) // forget history |
1208 | 1619 head[i]=0; |
1209 if (strm.avail_out == 0) return NeedMore; | 1620 } |
1210 } | 1621 } |
1211 } | 1622 strm.flush_pending(); |
1212 else if (match_available != 0) { | 1623 if(strm.avail_out == 0) { |
1213 // If there was no match at the previous position, output a | 1624 last_flush = -1; // avoid BUF_ERROR at next call, see above |
1214 // single literal. If there was a match but the current match | 1625 return Z_OK; |
1215 // is longer, truncate the previous match to a single literal. | 1626 } |
1216 bflush = _tr_tally(0, window[strstart - 1] & 0xff); | 1627 } |
1217 | 1628 } |
1218 if (bflush) { | 1629 |
1219 flush_block_only(false); | 1630 if(flush!=Z_FINISH) return Z_OK; |
1220 } | 1631 if(wrap<=0) return Z_STREAM_END; |
1221 | 1632 |
1222 strstart++; | 1633 if(wrap==2){ |
1223 lookahead--; | 1634 long adler=strm.adler.getValue(); |
1224 | 1635 put_byte((byte)(adler&0xff)); |
1225 if (strm.avail_out == 0) return NeedMore; | 1636 put_byte((byte)((adler>>8)&0xff)); |
1226 } | 1637 put_byte((byte)((adler>>16)&0xff)); |
1227 else { | 1638 put_byte((byte)((adler>>24)&0xff)); |
1228 // There is no previous match to compare with, wait for | 1639 put_byte((byte)(strm.total_in&0xff)); |
1229 // the next step to decide. | 1640 put_byte((byte)((strm.total_in>>8)&0xff)); |
1230 match_available = 1; | 1641 put_byte((byte)((strm.total_in>>16)&0xff)); |
1231 strstart++; | 1642 put_byte((byte)((strm.total_in>>24)&0xff)); |
1232 lookahead--; | 1643 |
1233 } | 1644 getGZIPHeader().setCRC(adler); |
1234 } | 1645 } |
1235 | 1646 else{ |
1236 if (match_available != 0) { | 1647 // Write the zlib trailer (adler32) |
1237 bflush = _tr_tally(0, window[strstart - 1] & 0xff); | 1648 long adler=strm.adler.getValue(); |
1238 match_available = 0; | 1649 putShortMSB((int)(adler>>>16)); |
1239 } | 1650 putShortMSB((int)(adler&0xffff)); |
1240 | 1651 } |
1241 flush_block_only(flush == Z_FINISH); | 1652 |
1242 | 1653 strm.flush_pending(); |
1243 if (strm.avail_out == 0) { | 1654 |
1244 if (flush == Z_FINISH) return FinishStarted; | 1655 // If avail_out is zero, the application will call deflate again |
1245 else return NeedMore; | 1656 // to flush the rest. |
1246 } | 1657 |
1247 | 1658 if(wrap > 0) wrap = -wrap; // write the trailer only once! |
1248 return flush == Z_FINISH ? FinishDone : BlockDone; | 1659 return pending != 0 ? Z_OK : Z_STREAM_END; |
1249 } | 1660 } |
1250 | 1661 |
1251 int longest_match(int cur_match) { | 1662 static int deflateCopy(ZStream dest, ZStream src){ |
1252 int chain_length = max_chain_length; // max hash chain length | 1663 |
1253 int scan = strstart; // current string | 1664 if(src.dstate == null){ |
1254 int match; // matched string | 1665 return Z_STREAM_ERROR; |
1255 int len; // length of current match | 1666 } |
1256 int best_len = prev_length; // best match length so far | 1667 |
1257 int limit = strstart > (w_size - MIN_LOOKAHEAD) ? | 1668 if(src.next_in!=null){ |
1258 strstart - (w_size - MIN_LOOKAHEAD) : 0; | 1669 dest.next_in = new byte[src.next_in.length]; |
1259 int nice_match = this.nice_match; | 1670 System.arraycopy(src.next_in, 0, dest.next_in, 0, src.next_in.length); |
1260 // Stop when cur_match becomes <= limit. To simplify the code, | 1671 } |
1261 // we prevent matches with the string of window index 0. | 1672 dest.next_in_index = src.next_in_index; |
1262 int wmask = w_mask; | 1673 dest.avail_in = src.avail_in; |
1263 int strend = strstart + MAX_MATCH; | 1674 dest.total_in = src.total_in; |
1264 byte scan_end1 = window[scan + best_len - 1]; | 1675 |
1265 byte scan_end = window[scan + best_len]; | 1676 if(src.next_out!=null){ |
1266 | 1677 dest.next_out = new byte[src.next_out.length]; |
1267 // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | 1678 System.arraycopy(src.next_out, 0, dest.next_out ,0 , src.next_out.length); |
1268 // It is easy to get rid of this optimization if necessary. | 1679 } |
1269 // Do not waste too much time if we already have a good match: | 1680 |
1270 if (prev_length >= good_match) { | 1681 dest.next_out_index = src.next_out_index; |
1271 chain_length >>= 2; | 1682 dest.avail_out = src.avail_out; |
1272 } | 1683 dest.total_out = src.total_out; |
1273 | 1684 |
1274 // Do not look for matches beyond the end of the input. This is necessary | 1685 dest.msg = src.msg; |
1275 // to make deflate deterministic. | 1686 dest.data_type = src.data_type; |
1276 if (nice_match > lookahead) nice_match = lookahead; | 1687 dest.adler = src.adler.copy(); |
1277 | 1688 |
1278 do { | 1689 try{ |
1279 match = cur_match; | 1690 dest.dstate = (Deflate)src.dstate.clone(); |
1280 | 1691 dest.dstate.strm = dest; |
1281 // Skip to next match if the match length cannot increase | 1692 } |
1282 // or if the match length is less than 2: | 1693 catch(CloneNotSupportedException e){ |
1283 if (window[match + best_len] != scan_end || | 1694 // |
1284 window[match + best_len - 1] != scan_end1 || | 1695 } |
1285 window[match] != window[scan] || | 1696 return Z_OK; |
1286 window[++match] != window[scan + 1]) continue; | 1697 } |
1287 | 1698 |
1288 // The check at best_len-1 can be removed because it will be made | 1699 public Object clone() throws CloneNotSupportedException { |
1289 // again later. (This heuristic is not always a win.) | 1700 Deflate dest = (Deflate)super.clone(); |
1290 // It is not necessary to compare scan[2] and match[2] since they | 1701 |
1291 // are always equal when the other bytes match, given that | 1702 dest.pending_buf = dup(dest.pending_buf); |
1292 // the hash keys are equal and that HASH_BITS >= 8. | 1703 dest.d_buf = dest.d_buf; |
1293 scan += 2; match++; | 1704 dest.l_buf = dup(dest.l_buf); |
1294 | 1705 dest.window = dup(dest.window); |
1295 // We check for insufficient lookahead only every 8th comparison; | 1706 |
1296 // the 256th check will be made at strstart+258. | 1707 dest.prev = dup(dest.prev); |
1297 do { | 1708 dest.head = dup(dest.head); |
1298 } | 1709 dest.dyn_ltree = dup(dest.dyn_ltree); |
1299 while (window[++scan] == window[++match] && | 1710 dest.dyn_dtree = dup(dest.dyn_dtree); |
1300 window[++scan] == window[++match] && | 1711 dest.bl_tree = dup(dest.bl_tree); |
1301 window[++scan] == window[++match] && | 1712 |
1302 window[++scan] == window[++match] && | 1713 dest.bl_count = dup(dest.bl_count); |
1303 window[++scan] == window[++match] && | 1714 dest.next_code = dup(dest.next_code); |
1304 window[++scan] == window[++match] && | 1715 dest.heap = dup(dest.heap); |
1305 window[++scan] == window[++match] && | 1716 dest.depth = dup(dest.depth); |
1306 window[++scan] == window[++match] && | 1717 |
1307 scan < strend); | 1718 dest.l_desc.dyn_tree = dest.dyn_ltree; |
1308 | 1719 dest.d_desc.dyn_tree = dest.dyn_dtree; |
1309 len = MAX_MATCH - (int)(strend - scan); | 1720 dest.bl_desc.dyn_tree = dest.bl_tree; |
1310 scan = strend - MAX_MATCH; | 1721 |
1311 | 1722 /* |
1312 if (len > best_len) { | 1723 dest.l_desc.stat_desc = StaticTree.static_l_desc; |
1313 match_start = cur_match; | 1724 dest.d_desc.stat_desc = StaticTree.static_d_desc; |
1314 best_len = len; | 1725 dest.bl_desc.stat_desc = StaticTree.static_bl_desc; |
1315 | 1726 */ |
1316 if (len >= nice_match) break; | 1727 |
1317 | 1728 if(dest.gheader!=null){ |
1318 scan_end1 = window[scan + best_len - 1]; | 1729 dest.gheader = (GZIPHeader)dest.gheader.clone(); |
1319 scan_end = window[scan + best_len]; | 1730 } |
1320 } | 1731 |
1321 } | 1732 return dest; |
1322 while ((cur_match = (prev[cur_match & wmask] & 0xffff)) > limit | 1733 } |
1323 && --chain_length != 0); | 1734 |
1324 | 1735 private byte[] dup(byte[] buf){ |
1325 if (best_len <= lookahead) return best_len; | 1736 byte[] foo = new byte[buf.length]; |
1326 | 1737 System.arraycopy(buf, 0, foo, 0, foo.length); |
1327 return lookahead; | 1738 return foo; |
1328 } | 1739 } |
1329 | 1740 private short[] dup(short[] buf){ |
1330 int deflateInit(ZStream strm, int level, int bits) { | 1741 short[] foo = new short[buf.length]; |
1331 return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, | 1742 System.arraycopy(buf, 0, foo, 0, foo.length); |
1332 Z_DEFAULT_STRATEGY); | 1743 return foo; |
1333 } | 1744 } |
1334 int deflateInit(ZStream strm, int level) { | 1745 private int[] dup(int[] buf){ |
1335 return deflateInit(strm, level, MAX_WBITS); | 1746 int[] foo = new int[buf.length]; |
1336 } | 1747 System.arraycopy(buf, 0, foo, 0, foo.length); |
1337 int deflateInit2(ZStream strm, int level, int method, int windowBits, | 1748 return foo; |
1338 int memLevel, int strategy) { | 1749 } |
1339 int noheader = 0; | 1750 |
1340 // byte[] my_version=ZLIB_VERSION; | 1751 synchronized GZIPHeader getGZIPHeader(){ |
1341 // | 1752 if(gheader==null){ |
1342 // if (version == null || version[0] != my_version[0] | 1753 gheader = new GZIPHeader(); |
1343 // || stream_size != sizeof(z_stream)) { | 1754 } |
1344 // return Z_VERSION_ERROR; | 1755 return gheader; |
1345 // } | 1756 } |
1346 strm.msg = null; | |
1347 | |
1348 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
1349 | |
1350 if (windowBits < 0) { // undocumented feature: suppress zlib header | |
1351 noheader = 1; | |
1352 windowBits = -windowBits; | |
1353 } | |
1354 | |
1355 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || | |
1356 method != Z_DEFLATED || | |
1357 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || | |
1358 strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | |
1359 return Z_STREAM_ERROR; | |
1360 } | |
1361 | |
1362 strm.dstate = (Deflate)this; | |
1363 this.noheader = noheader; | |
1364 w_bits = windowBits; | |
1365 w_size = 1 << w_bits; | |
1366 w_mask = w_size - 1; | |
1367 hash_bits = memLevel + 7; | |
1368 hash_size = 1 << hash_bits; | |
1369 hash_mask = hash_size - 1; | |
1370 hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH); | |
1371 window = new byte[w_size * 2]; | |
1372 prev = new short[w_size]; | |
1373 head = new short[hash_size]; | |
1374 lit_bufsize = 1 << (memLevel + 6); // 16K elements by default | |
1375 // We overlay pending_buf and d_buf+l_buf. This works since the average | |
1376 // output size for (length,distance) codes is <= 24 bits. | |
1377 pending_buf = new byte[lit_bufsize * 4]; | |
1378 pending_buf_size = lit_bufsize * 4; | |
1379 d_buf = lit_bufsize / 2; | |
1380 l_buf = (1 + 2) * lit_bufsize; | |
1381 this.level = level; | |
1382 //System.out.println("level="+level); | |
1383 this.strategy = strategy; | |
1384 this.method = (byte)method; | |
1385 return deflateReset(strm); | |
1386 } | |
1387 | |
1388 int deflateReset(ZStream strm) { | |
1389 strm.total_in = strm.total_out = 0; | |
1390 strm.msg = null; // | |
1391 strm.data_type = Z_UNKNOWN; | |
1392 pending = 0; | |
1393 pending_out = 0; | |
1394 | |
1395 if (noheader < 0) { | |
1396 noheader = 0; // was set to -1 by deflate(..., Z_FINISH); | |
1397 } | |
1398 | |
1399 status = (noheader != 0) ? BUSY_STATE : INIT_STATE; | |
1400 strm.adler = strm._adler.adler32(0, null, 0, 0); | |
1401 last_flush = Z_NO_FLUSH; | |
1402 tr_init(); | |
1403 lm_init(); | |
1404 return Z_OK; | |
1405 } | |
1406 | |
1407 int deflateEnd() { | |
1408 if (status != INIT_STATE && status != BUSY_STATE && status != FINISH_STATE) { | |
1409 return Z_STREAM_ERROR; | |
1410 } | |
1411 | |
1412 // Deallocate in reverse order of allocations: | |
1413 pending_buf = null; | |
1414 head = null; | |
1415 prev = null; | |
1416 window = null; | |
1417 // free | |
1418 // dstate=null; | |
1419 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
1420 } | |
1421 | |
1422 int deflateParams(ZStream strm, int _level, int _strategy) { | |
1423 int err = Z_OK; | |
1424 | |
1425 if (_level == Z_DEFAULT_COMPRESSION) { | |
1426 _level = 6; | |
1427 } | |
1428 | |
1429 if (_level < 0 || _level > 9 || | |
1430 _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { | |
1431 return Z_STREAM_ERROR; | |
1432 } | |
1433 | |
1434 if (config_table[level].func != config_table[_level].func && | |
1435 strm.total_in != 0) { | |
1436 // Flush the last buffer: | |
1437 err = strm.deflate(Z_PARTIAL_FLUSH); | |
1438 } | |
1439 | |
1440 if (level != _level) { | |
1441 level = _level; | |
1442 max_lazy_match = config_table[level].max_lazy; | |
1443 good_match = config_table[level].good_length; | |
1444 nice_match = config_table[level].nice_length; | |
1445 max_chain_length = config_table[level].max_chain; | |
1446 } | |
1447 | |
1448 strategy = _strategy; | |
1449 return err; | |
1450 } | |
1451 | |
1452 int deflateSetDictionary(ZStream strm, byte[] dictionary, int dictLength) { | |
1453 int length = dictLength; | |
1454 int index = 0; | |
1455 | |
1456 if (dictionary == null || status != INIT_STATE) | |
1457 return Z_STREAM_ERROR; | |
1458 | |
1459 strm.adler = strm._adler.adler32(strm.adler, dictionary, 0, dictLength); | |
1460 | |
1461 if (length < MIN_MATCH) return Z_OK; | |
1462 | |
1463 if (length > w_size - MIN_LOOKAHEAD) { | |
1464 length = w_size - MIN_LOOKAHEAD; | |
1465 index = dictLength - length; // use the tail of the dictionary | |
1466 } | |
1467 | |
1468 System.arraycopy(dictionary, index, window, 0, length); | |
1469 strstart = length; | |
1470 block_start = length; | |
1471 // Insert all strings in the hash table (except for the last two bytes). | |
1472 // s->lookahead stays null, so s->ins_h will be recomputed at the next | |
1473 // call of fill_window. | |
1474 ins_h = window[0] & 0xff; | |
1475 ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask; | |
1476 | |
1477 for (int n = 0; n <= length - MIN_MATCH; n++) { | |
1478 ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | |
1479 prev[n & w_mask] = head[ins_h]; | |
1480 head[ins_h] = (short)n; | |
1481 } | |
1482 | |
1483 return Z_OK; | |
1484 } | |
1485 | |
1486 int deflate(ZStream strm, int flush) { | |
1487 int old_flush; | |
1488 | |
1489 if (flush > Z_FINISH || flush < 0) { | |
1490 return Z_STREAM_ERROR; | |
1491 } | |
1492 | |
1493 if (strm.next_out == null || | |
1494 (strm.next_in == null && strm.avail_in != 0) || | |
1495 (status == FINISH_STATE && flush != Z_FINISH)) { | |
1496 strm.msg = z_errmsg[Z_NEED_DICT - (Z_STREAM_ERROR)]; | |
1497 return Z_STREAM_ERROR; | |
1498 } | |
1499 | |
1500 if (strm.avail_out == 0) { | |
1501 strm.msg = z_errmsg[Z_NEED_DICT - (Z_BUF_ERROR)]; | |
1502 return Z_BUF_ERROR; | |
1503 } | |
1504 | |
1505 this.strm = strm; // just in case | |
1506 old_flush = last_flush; | |
1507 last_flush = flush; | |
1508 | |
1509 // Write the zlib header | |
1510 if (status == INIT_STATE) { | |
1511 int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8; | |
1512 int level_flags = ((level - 1) & 0xff) >> 1; | |
1513 | |
1514 if (level_flags > 3) level_flags = 3; | |
1515 | |
1516 header |= (level_flags << 6); | |
1517 | |
1518 if (strstart != 0) header |= PRESET_DICT; | |
1519 | |
1520 header += 31 - (header % 31); | |
1521 status = BUSY_STATE; | |
1522 putShortMSB(header); | |
1523 | |
1524 // Save the adler32 of the preset dictionary: | |
1525 if (strstart != 0) { | |
1526 putShortMSB((int)(strm.adler >>> 16)); | |
1527 putShortMSB((int)(strm.adler & 0xffff)); | |
1528 } | |
1529 | |
1530 strm.adler = strm._adler.adler32(0, null, 0, 0); | |
1531 } | |
1532 | |
1533 // Flush as much pending output as possible | |
1534 if (pending != 0) { | |
1535 strm.flush_pending(); | |
1536 | |
1537 if (strm.avail_out == 0) { | |
1538 //System.out.println(" avail_out==0"); | |
1539 // Since avail_out is 0, deflate will be called again with | |
1540 // more output space, but possibly with both pending and | |
1541 // avail_in equal to zero. There won't be anything to do, | |
1542 // but this is not an error situation so make sure we | |
1543 // return OK instead of BUF_ERROR at next call of deflate: | |
1544 last_flush = -1; | |
1545 return Z_OK; | |
1546 } | |
1547 | |
1548 // Make sure there is something to do and avoid duplicate consecutive | |
1549 // flushes. For repeated and useless calls with Z_FINISH, we keep | |
1550 // returning Z_STREAM_END instead of Z_BUFF_ERROR. | |
1551 } | |
1552 else if (strm.avail_in == 0 && flush <= old_flush && | |
1553 flush != Z_FINISH) { | |
1554 strm.msg = z_errmsg[Z_NEED_DICT - (Z_BUF_ERROR)]; | |
1555 return Z_BUF_ERROR; | |
1556 } | |
1557 | |
1558 // User must not provide more input after the first FINISH: | |
1559 if (status == FINISH_STATE && strm.avail_in != 0) { | |
1560 strm.msg = z_errmsg[Z_NEED_DICT - (Z_BUF_ERROR)]; | |
1561 return Z_BUF_ERROR; | |
1562 } | |
1563 | |
1564 // Start a new block or continue the current one. | |
1565 if (strm.avail_in != 0 || lookahead != 0 || | |
1566 (flush != Z_NO_FLUSH && status != FINISH_STATE)) { | |
1567 int bstate = -1; | |
1568 | |
1569 switch (config_table[level].func) { | |
1570 case STORED: | |
1571 bstate = deflate_stored(flush); | |
1572 break; | |
1573 | |
1574 case FAST: | |
1575 bstate = deflate_fast(flush); | |
1576 break; | |
1577 | |
1578 case SLOW: | |
1579 bstate = deflate_slow(flush); | |
1580 break; | |
1581 | |
1582 default: | |
1583 } | |
1584 | |
1585 if (bstate == FinishStarted || bstate == FinishDone) { | |
1586 status = FINISH_STATE; | |
1587 } | |
1588 | |
1589 if (bstate == NeedMore || bstate == FinishStarted) { | |
1590 if (strm.avail_out == 0) { | |
1591 last_flush = -1; // avoid BUF_ERROR next call, see above | |
1592 } | |
1593 | |
1594 return Z_OK; | |
1595 // If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
1596 // of deflate should use the same flush parameter to make sure | |
1597 // that the flush is complete. So we don't have to output an | |
1598 // empty block here, this will be done at next call. This also | |
1599 // ensures that for a very small output buffer, we emit at most | |
1600 // one empty block. | |
1601 } | |
1602 | |
1603 if (bstate == BlockDone) { | |
1604 if (flush == Z_PARTIAL_FLUSH) { | |
1605 _tr_align(); | |
1606 } | |
1607 else { // FULL_FLUSH or SYNC_FLUSH | |
1608 _tr_stored_block(0, 0, false); | |
1609 | |
1610 // For a full flush, this empty block will be recognized | |
1611 // as a special marker by inflate_sync(). | |
1612 if (flush == Z_FULL_FLUSH) { | |
1613 //state.head[s.hash_size-1]=0; | |
1614 for (int i = 0; i < hash_size/*-1*/; i++) // forget history | |
1615 head[i] = 0; | |
1616 } | |
1617 } | |
1618 | |
1619 strm.flush_pending(); | |
1620 | |
1621 if (strm.avail_out == 0) { | |
1622 last_flush = -1; // avoid BUF_ERROR at next call, see above | |
1623 return Z_OK; | |
1624 } | |
1625 } | |
1626 } | |
1627 | |
1628 if (flush != Z_FINISH) return Z_OK; | |
1629 | |
1630 if (noheader != 0) return Z_STREAM_END; | |
1631 | |
1632 // Write the zlib trailer (adler32) | |
1633 putShortMSB((int)(strm.adler >>> 16)); | |
1634 putShortMSB((int)(strm.adler & 0xffff)); | |
1635 strm.flush_pending(); | |
1636 // If avail_out is zero, the application will call deflate again | |
1637 // to flush the rest. | |
1638 noheader = -1; // write the trailer only once! | |
1639 return pending != 0 ? Z_OK : Z_STREAM_END; | |
1640 } | |
1641 } | 1757 } |