Mercurial > 510Connectbot
comparison app/src/main/java/com/jcraft/jzlib/Deflate.java @ 438:d29cce60f393
migrate from Eclipse to Android Studio
author | Carl Byington <carl@five-ten-sg.com> |
---|---|
date | Thu, 03 Dec 2015 11:23:55 -0800 |
parents | src/com/jcraft/jzlib/Deflate.java@46c2115ae1c8 |
children |
comparison
equal
deleted
inserted
replaced
437:208b31032318 | 438:d29cce60f393 |
---|---|
1 /* -*-mode:java; c-basic-offset:2; -*- */ | |
2 /* | |
3 Copyright (c) 2000-2011 ymnk, JCraft,Inc. All rights reserved. | |
4 | |
5 Redistribution and use in source and binary forms, with or without | |
6 modification, are permitted provided that the following conditions are met: | |
7 | |
8 1. Redistributions of source code must retain the above copyright notice, | |
9 this list of conditions and the following disclaimer. | |
10 | |
11 2. Redistributions in binary form must reproduce the above copyright | |
12 notice, this list of conditions and the following disclaimer in | |
13 the documentation and/or other materials provided with the distribution. | |
14 | |
15 3. The names of the authors may not be used to endorse or promote products | |
16 derived from this software without specific prior written permission. | |
17 | |
18 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, | |
19 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | |
20 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, | |
21 INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, | |
22 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
23 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, | |
24 OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |
27 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
28 */ | |
29 /* | |
30 * This program is based on zlib-1.1.3, so all credit should go authors | |
31 * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) | |
32 * and contributors of zlib. | |
33 */ | |
34 | |
35 package com.jcraft.jzlib; | |
36 | |
37 public | |
38 final class Deflate implements Cloneable { | |
39 | |
40 static final private int MAX_MEM_LEVEL=9; | |
41 | |
42 static final private int Z_DEFAULT_COMPRESSION=-1; | |
43 | |
44 static final private int MAX_WBITS=15; // 32K LZ77 window | |
45 static final private int DEF_MEM_LEVEL=8; | |
46 | |
47 static class Config{ | |
48 int good_length; // reduce lazy search above this match length | |
49 int max_lazy; // do not perform lazy search above this match length | |
50 int nice_length; // quit search above this match length | |
51 int max_chain; | |
52 int func; | |
53 Config(int good_length, int max_lazy, | |
54 int nice_length, int max_chain, int func){ | |
55 this.good_length=good_length; | |
56 this.max_lazy=max_lazy; | |
57 this.nice_length=nice_length; | |
58 this.max_chain=max_chain; | |
59 this.func=func; | |
60 } | |
61 } | |
62 | |
63 static final private int STORED=0; | |
64 static final private int FAST=1; | |
65 static final private int SLOW=2; | |
66 static final private Config[] config_table; | |
67 static{ | |
68 config_table=new Config[10]; | |
69 // good lazy nice chain | |
70 config_table[0]=new Config(0, 0, 0, 0, STORED); | |
71 config_table[1]=new Config(4, 4, 8, 4, FAST); | |
72 config_table[2]=new Config(4, 5, 16, 8, FAST); | |
73 config_table[3]=new Config(4, 6, 32, 32, FAST); | |
74 | |
75 config_table[4]=new Config(4, 4, 16, 16, SLOW); | |
76 config_table[5]=new Config(8, 16, 32, 32, SLOW); | |
77 config_table[6]=new Config(8, 16, 128, 128, SLOW); | |
78 config_table[7]=new Config(8, 32, 128, 256, SLOW); | |
79 config_table[8]=new Config(32, 128, 258, 1024, SLOW); | |
80 config_table[9]=new Config(32, 258, 258, 4096, SLOW); | |
81 } | |
82 | |
83 static final private String[] z_errmsg = { | |
84 "need dictionary", // Z_NEED_DICT 2 | |
85 "stream end", // Z_STREAM_END 1 | |
86 "", // Z_OK 0 | |
87 "file error", // Z_ERRNO (-1) | |
88 "stream error", // Z_STREAM_ERROR (-2) | |
89 "data error", // Z_DATA_ERROR (-3) | |
90 "insufficient memory", // Z_MEM_ERROR (-4) | |
91 "buffer error", // Z_BUF_ERROR (-5) | |
92 "incompatible version",// Z_VERSION_ERROR (-6) | |
93 "" | |
94 }; | |
95 | |
96 // block not completed, need more input or more output | |
97 static final private int NeedMore=0; | |
98 | |
99 // block flush performed | |
100 static final private int BlockDone=1; | |
101 | |
102 // finish started, need only more output at next deflate | |
103 static final private int FinishStarted=2; | |
104 | |
105 // finish done, accept no more input or output | |
106 static final private int FinishDone=3; | |
107 | |
108 // preset dictionary flag in zlib header | |
109 static final private int PRESET_DICT=0x20; | |
110 | |
111 static final private int Z_FILTERED=1; | |
112 static final private int Z_HUFFMAN_ONLY=2; | |
113 static final private int Z_DEFAULT_STRATEGY=0; | |
114 | |
115 static final private int Z_NO_FLUSH=0; | |
116 static final private int Z_PARTIAL_FLUSH=1; | |
117 static final private int Z_SYNC_FLUSH=2; | |
118 static final private int Z_FULL_FLUSH=3; | |
119 static final private int Z_FINISH=4; | |
120 | |
121 static final private int Z_OK=0; | |
122 static final private int Z_STREAM_END=1; | |
123 static final private int Z_NEED_DICT=2; | |
124 static final private int Z_ERRNO=-1; | |
125 static final private int Z_STREAM_ERROR=-2; | |
126 static final private int Z_DATA_ERROR=-3; | |
127 static final private int Z_MEM_ERROR=-4; | |
128 static final private int Z_BUF_ERROR=-5; | |
129 static final private int Z_VERSION_ERROR=-6; | |
130 | |
131 static final private int INIT_STATE=42; | |
132 static final private int BUSY_STATE=113; | |
133 static final private int FINISH_STATE=666; | |
134 | |
135 // The deflate compression method | |
136 static final private int Z_DEFLATED=8; | |
137 | |
138 static final private int STORED_BLOCK=0; | |
139 static final private int STATIC_TREES=1; | |
140 static final private int DYN_TREES=2; | |
141 | |
142 // The three kinds of block type | |
143 static final private int Z_BINARY=0; | |
144 static final private int Z_ASCII=1; | |
145 static final private int Z_UNKNOWN=2; | |
146 | |
147 static final private int Buf_size=8*2; | |
148 | |
149 // repeat previous bit length 3-6 times (2 bits of repeat count) | |
150 static final private int REP_3_6=16; | |
151 | |
152 // repeat a zero length 3-10 times (3 bits of repeat count) | |
153 static final private int REPZ_3_10=17; | |
154 | |
155 // repeat a zero length 11-138 times (7 bits of repeat count) | |
156 static final private int REPZ_11_138=18; | |
157 | |
158 static final private int MIN_MATCH=3; | |
159 static final private int MAX_MATCH=258; | |
160 static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1); | |
161 | |
162 static final private int MAX_BITS=15; | |
163 static final private int D_CODES=30; | |
164 static final private int BL_CODES=19; | |
165 static final private int LENGTH_CODES=29; | |
166 static final private int LITERALS=256; | |
167 static final private int L_CODES=(LITERALS+1+LENGTH_CODES); | |
168 static final private int HEAP_SIZE=(2*L_CODES+1); | |
169 | |
170 static final private int END_BLOCK=256; | |
171 | |
172 ZStream strm; // pointer back to this zlib stream | |
173 int status; // as the name implies | |
174 byte[] pending_buf; // output still pending | |
175 int pending_buf_size; // size of pending_buf | |
176 int pending_out; // next pending byte to output to the stream | |
177 int pending; // nb of bytes in the pending buffer | |
178 int wrap = 1; | |
179 byte data_type; // UNKNOWN, BINARY or ASCII | |
180 byte method; // STORED (for zip only) or DEFLATED | |
181 int last_flush; // value of flush param for previous deflate call | |
182 | |
183 int w_size; // LZ77 window size (32K by default) | |
184 int w_bits; // log2(w_size) (8..16) | |
185 int w_mask; // w_size - 1 | |
186 | |
187 byte[] window; | |
188 // Sliding window. Input bytes are read into the second half of the window, | |
189 // and move to the first half later to keep a dictionary of at least wSize | |
190 // bytes. With this organization, matches are limited to a distance of | |
191 // wSize-MAX_MATCH bytes, but this ensures that IO is always | |
192 // performed with a length multiple of the block size. Also, it limits | |
193 // the window size to 64K, which is quite useful on MSDOS. | |
194 // To do: use the user input buffer as sliding window. | |
195 | |
196 int window_size; | |
197 // Actual size of window: 2*wSize, except when the user input buffer | |
198 // is directly used as sliding window. | |
199 | |
200 short[] prev; | |
201 // Link to older string with same hash index. To limit the size of this | |
202 // array to 64K, this link is maintained only for the last 32K strings. | |
203 // An index in this array is thus a window index modulo 32K. | |
204 | |
205 short[] head; // Heads of the hash chains or NIL. | |
206 | |
207 int ins_h; // hash index of string to be inserted | |
208 int hash_size; // number of elements in hash table | |
209 int hash_bits; // log2(hash_size) | |
210 int hash_mask; // hash_size-1 | |
211 | |
212 // Number of bits by which ins_h must be shifted at each input | |
213 // step. It must be such that after MIN_MATCH steps, the oldest | |
214 // byte no longer takes part in the hash key, that is: | |
215 // hash_shift * MIN_MATCH >= hash_bits | |
216 int hash_shift; | |
217 | |
218 // Window position at the beginning of the current output block. Gets | |
219 // negative when the window is moved backwards. | |
220 | |
221 int block_start; | |
222 | |
223 int match_length; // length of best match | |
224 int prev_match; // previous match | |
225 int match_available; // set if previous match exists | |
226 int strstart; // start of string to insert | |
227 int match_start; // start of matching string | |
228 int lookahead; // number of valid bytes ahead in window | |
229 | |
230 // Length of the best match at previous step. Matches not greater than this | |
231 // are discarded. This is used in the lazy match evaluation. | |
232 int prev_length; | |
233 | |
234 // To speed up deflation, hash chains are never searched beyond this | |
235 // length. A higher limit improves compression ratio but degrades the speed. | |
236 int max_chain_length; | |
237 | |
238 // Attempt to find a better match only when the current match is strictly | |
239 // smaller than this value. This mechanism is used only for compression | |
240 // levels >= 4. | |
241 int max_lazy_match; | |
242 | |
243 // Insert new strings in the hash table only if the match length is not | |
244 // greater than this length. This saves time but degrades compression. | |
245 // max_insert_length is used only for compression levels <= 3. | |
246 | |
247 int level; // compression level (1..9) | |
248 int strategy; // favor or force Huffman coding | |
249 | |
250 // Use a faster search when the previous match is longer than this | |
251 int good_match; | |
252 | |
253 // Stop searching when current match exceeds this | |
254 int nice_match; | |
255 | |
256 short[] dyn_ltree; // literal and length tree | |
257 short[] dyn_dtree; // distance tree | |
258 short[] bl_tree; // Huffman tree for bit lengths | |
259 | |
260 Tree l_desc=new Tree(); // desc for literal tree | |
261 Tree d_desc=new Tree(); // desc for distance tree | |
262 Tree bl_desc=new Tree(); // desc for bit length tree | |
263 | |
264 // number of codes at each bit length for an optimal tree | |
265 short[] bl_count=new short[MAX_BITS+1]; | |
266 // working area to be used in Tree#gen_codes() | |
267 short[] next_code=new short[MAX_BITS+1]; | |
268 | |
269 // heap used to build the Huffman trees | |
270 int[] heap=new int[2*L_CODES+1]; | |
271 | |
272 int heap_len; // number of elements in the heap | |
273 int heap_max; // element of largest frequency | |
274 // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | |
275 // The same heap array is used to build all trees. | |
276 | |
277 // Depth of each subtree used as tie breaker for trees of equal frequency | |
278 byte[] depth=new byte[2*L_CODES+1]; | |
279 | |
280 byte[] l_buf; // index for literals or lengths */ | |
281 | |
282 // Size of match buffer for literals/lengths. There are 4 reasons for | |
283 // limiting lit_bufsize to 64K: | |
284 // - frequencies can be kept in 16 bit counters | |
285 // - if compression is not successful for the first block, all input | |
286 // data is still in the window so we can still emit a stored block even | |
287 // when input comes from standard input. (This can also be done for | |
288 // all blocks if lit_bufsize is not greater than 32K.) | |
289 // - if compression is not successful for a file smaller than 64K, we can | |
290 // even emit a stored file instead of a stored block (saving 5 bytes). | |
291 // This is applicable only for zip (not gzip or zlib). | |
292 // - creating new Huffman trees less frequently may not provide fast | |
293 // adaptation to changes in the input data statistics. (Take for | |
294 // example a binary file with poorly compressible code followed by | |
295 // a highly compressible string table.) Smaller buffer sizes give | |
296 // fast adaptation but have of course the overhead of transmitting | |
297 // trees more frequently. | |
298 // - I can't count above 4 | |
299 int lit_bufsize; | |
300 | |
301 int last_lit; // running index in l_buf | |
302 | |
303 // Buffer for distances. To simplify the code, d_buf and l_buf have | |
304 // the same number of elements. To use different lengths, an extra flag | |
305 // array would be necessary. | |
306 | |
307 int d_buf; // index of pendig_buf | |
308 | |
309 int opt_len; // bit length of current block with optimal trees | |
310 int static_len; // bit length of current block with static trees | |
311 int matches; // number of string matches in current block | |
312 int last_eob_len; // bit length of EOB code for last block | |
313 | |
314 // Output buffer. bits are inserted starting at the bottom (least | |
315 // significant bits). | |
316 short bi_buf; | |
317 | |
318 // Number of valid bits in bi_buf. All bits above the last valid bit | |
319 // are always zero. | |
320 int bi_valid; | |
321 | |
322 GZIPHeader gheader = null; | |
323 | |
324 Deflate(ZStream strm){ | |
325 this.strm=strm; | |
326 dyn_ltree=new short[HEAP_SIZE*2]; | |
327 dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree | |
328 bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths | |
329 } | |
330 | |
331 void lm_init() { | |
332 window_size=2*w_size; | |
333 | |
334 head[hash_size-1]=0; | |
335 for(int i=0; i<hash_size-1; i++){ | |
336 head[i]=0; | |
337 } | |
338 | |
339 // Set the default configuration parameters: | |
340 max_lazy_match = Deflate.config_table[level].max_lazy; | |
341 good_match = Deflate.config_table[level].good_length; | |
342 nice_match = Deflate.config_table[level].nice_length; | |
343 max_chain_length = Deflate.config_table[level].max_chain; | |
344 | |
345 strstart = 0; | |
346 block_start = 0; | |
347 lookahead = 0; | |
348 match_length = prev_length = MIN_MATCH-1; | |
349 match_available = 0; | |
350 ins_h = 0; | |
351 } | |
352 | |
353 // Initialize the tree data structures for a new zlib stream. | |
354 void tr_init(){ | |
355 | |
356 l_desc.dyn_tree = dyn_ltree; | |
357 l_desc.stat_desc = StaticTree.static_l_desc; | |
358 | |
359 d_desc.dyn_tree = dyn_dtree; | |
360 d_desc.stat_desc = StaticTree.static_d_desc; | |
361 | |
362 bl_desc.dyn_tree = bl_tree; | |
363 bl_desc.stat_desc = StaticTree.static_bl_desc; | |
364 | |
365 bi_buf = 0; | |
366 bi_valid = 0; | |
367 last_eob_len = 8; // enough lookahead for inflate | |
368 | |
369 // Initialize the first block of the first file: | |
370 init_block(); | |
371 } | |
372 | |
373 void init_block(){ | |
374 // Initialize the trees. | |
375 for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0; | |
376 for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0; | |
377 for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0; | |
378 | |
379 dyn_ltree[END_BLOCK*2] = 1; | |
380 opt_len = static_len = 0; | |
381 last_lit = matches = 0; | |
382 } | |
383 | |
384 // Restore the heap property by moving down the tree starting at node k, | |
385 // exchanging a node with the smallest of its two sons if necessary, stopping | |
386 // when the heap property is re-established (each father smaller than its | |
387 // two sons). | |
388 void pqdownheap(short[] tree, // the tree to restore | |
389 int k // node to move down | |
390 ){ | |
391 int v = heap[k]; | |
392 int j = k << 1; // left son of k | |
393 while (j <= heap_len) { | |
394 // Set j to the smallest of the two sons: | |
395 if (j < heap_len && | |
396 smaller(tree, heap[j+1], heap[j], depth)){ | |
397 j++; | |
398 } | |
399 // Exit if v is smaller than both sons | |
400 if(smaller(tree, v, heap[j], depth)) break; | |
401 | |
402 // Exchange v with the smallest son | |
403 heap[k]=heap[j]; k = j; | |
404 // And continue down the tree, setting j to the left son of k | |
405 j <<= 1; | |
406 } | |
407 heap[k] = v; | |
408 } | |
409 | |
410 static boolean smaller(short[] tree, int n, int m, byte[] depth){ | |
411 short tn2=tree[n*2]; | |
412 short tm2=tree[m*2]; | |
413 return (tn2<tm2 || | |
414 (tn2==tm2 && depth[n] <= depth[m])); | |
415 } | |
416 | |
417 // Scan a literal or distance tree to determine the frequencies of the codes | |
418 // in the bit length tree. | |
419 void scan_tree (short[] tree,// the tree to be scanned | |
420 int max_code // and its largest code of non zero frequency | |
421 ){ | |
422 int n; // iterates over all tree elements | |
423 int prevlen = -1; // last emitted length | |
424 int curlen; // length of current code | |
425 int nextlen = tree[0*2+1]; // length of next code | |
426 int count = 0; // repeat count of the current code | |
427 int max_count = 7; // max repeat count | |
428 int min_count = 4; // min repeat count | |
429 | |
430 if (nextlen == 0){ max_count = 138; min_count = 3; } | |
431 tree[(max_code+1)*2+1] = (short)0xffff; // guard | |
432 | |
433 for(n = 0; n <= max_code; n++) { | |
434 curlen = nextlen; nextlen = tree[(n+1)*2+1]; | |
435 if(++count < max_count && curlen == nextlen) { | |
436 continue; | |
437 } | |
438 else if(count < min_count) { | |
439 bl_tree[curlen*2] += count; | |
440 } | |
441 else if(curlen != 0) { | |
442 if(curlen != prevlen) bl_tree[curlen*2]++; | |
443 bl_tree[REP_3_6*2]++; | |
444 } | |
445 else if(count <= 10) { | |
446 bl_tree[REPZ_3_10*2]++; | |
447 } | |
448 else{ | |
449 bl_tree[REPZ_11_138*2]++; | |
450 } | |
451 count = 0; prevlen = curlen; | |
452 if(nextlen == 0) { | |
453 max_count = 138; min_count = 3; | |
454 } | |
455 else if(curlen == nextlen) { | |
456 max_count = 6; min_count = 3; | |
457 } | |
458 else{ | |
459 max_count = 7; min_count = 4; | |
460 } | |
461 } | |
462 } | |
463 | |
464 // Construct the Huffman tree for the bit lengths and return the index in | |
465 // bl_order of the last bit length code to send. | |
466 int build_bl_tree(){ | |
467 int max_blindex; // index of last bit length code of non zero freq | |
468 | |
469 // Determine the bit length frequencies for literal and distance trees | |
470 scan_tree(dyn_ltree, l_desc.max_code); | |
471 scan_tree(dyn_dtree, d_desc.max_code); | |
472 | |
473 // Build the bit length tree: | |
474 bl_desc.build_tree(this); | |
475 // opt_len now includes the length of the tree representations, except | |
476 // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
477 | |
478 // Determine the number of bit length codes to send. The pkzip format | |
479 // requires that at least 4 bit length codes be sent. (appnote.txt says | |
480 // 3 but the actual value used is 4.) | |
481 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
482 if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break; | |
483 } | |
484 // Update opt_len to include the bit length tree and counts | |
485 opt_len += 3*(max_blindex+1) + 5+5+4; | |
486 | |
487 return max_blindex; | |
488 } | |
489 | |
490 | |
491 // Send the header for a block using dynamic Huffman trees: the counts, the | |
492 // lengths of the bit length codes, the literal tree and the distance tree. | |
493 // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
494 void send_all_trees(int lcodes, int dcodes, int blcodes){ | |
495 int rank; // index in bl_order | |
496 | |
497 send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt | |
498 send_bits(dcodes-1, 5); | |
499 send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt | |
500 for (rank = 0; rank < blcodes; rank++) { | |
501 send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3); | |
502 } | |
503 send_tree(dyn_ltree, lcodes-1); // literal tree | |
504 send_tree(dyn_dtree, dcodes-1); // distance tree | |
505 } | |
506 | |
507 // Send a literal or distance tree in compressed form, using the codes in | |
508 // bl_tree. | |
509 void send_tree (short[] tree,// the tree to be sent | |
510 int max_code // and its largest code of non zero frequency | |
511 ){ | |
512 int n; // iterates over all tree elements | |
513 int prevlen = -1; // last emitted length | |
514 int curlen; // length of current code | |
515 int nextlen = tree[0*2+1]; // length of next code | |
516 int count = 0; // repeat count of the current code | |
517 int max_count = 7; // max repeat count | |
518 int min_count = 4; // min repeat count | |
519 | |
520 if (nextlen == 0){ max_count = 138; min_count = 3; } | |
521 | |
522 for (n = 0; n <= max_code; n++) { | |
523 curlen = nextlen; nextlen = tree[(n+1)*2+1]; | |
524 if(++count < max_count && curlen == nextlen) { | |
525 continue; | |
526 } | |
527 else if(count < min_count) { | |
528 do { send_code(curlen, bl_tree); } while (--count != 0); | |
529 } | |
530 else if(curlen != 0){ | |
531 if(curlen != prevlen){ | |
532 send_code(curlen, bl_tree); count--; | |
533 } | |
534 send_code(REP_3_6, bl_tree); | |
535 send_bits(count-3, 2); | |
536 } | |
537 else if(count <= 10){ | |
538 send_code(REPZ_3_10, bl_tree); | |
539 send_bits(count-3, 3); | |
540 } | |
541 else{ | |
542 send_code(REPZ_11_138, bl_tree); | |
543 send_bits(count-11, 7); | |
544 } | |
545 count = 0; prevlen = curlen; | |
546 if(nextlen == 0){ | |
547 max_count = 138; min_count = 3; | |
548 } | |
549 else if(curlen == nextlen){ | |
550 max_count = 6; min_count = 3; | |
551 } | |
552 else{ | |
553 max_count = 7; min_count = 4; | |
554 } | |
555 } | |
556 } | |
557 | |
558 // Output a byte on the stream. | |
559 // IN assertion: there is enough room in pending_buf. | |
560 final void put_byte(byte[] p, int start, int len){ | |
561 System.arraycopy(p, start, pending_buf, pending, len); | |
562 pending+=len; | |
563 } | |
564 | |
565 final void put_byte(byte c){ | |
566 pending_buf[pending++]=c; | |
567 } | |
568 final void put_short(int w) { | |
569 put_byte((byte)(w/*&0xff*/)); | |
570 put_byte((byte)(w>>>8)); | |
571 } | |
572 final void putShortMSB(int b){ | |
573 put_byte((byte)(b>>8)); | |
574 put_byte((byte)(b/*&0xff*/)); | |
575 } | |
576 | |
577 final void send_code(int c, short[] tree){ | |
578 int c2=c*2; | |
579 send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff)); | |
580 } | |
581 | |
582 void send_bits(int value, int length){ | |
583 int len = length; | |
584 if (bi_valid > (int)Buf_size - len) { | |
585 int val = value; | |
586 // bi_buf |= (val << bi_valid); | |
587 bi_buf |= ((val << bi_valid)&0xffff); | |
588 put_short(bi_buf); | |
589 bi_buf = (short)(val >>> (Buf_size - bi_valid)); | |
590 bi_valid += len - Buf_size; | |
591 } else { | |
592 // bi_buf |= (value) << bi_valid; | |
593 bi_buf |= (((value) << bi_valid)&0xffff); | |
594 bi_valid += len; | |
595 } | |
596 } | |
597 | |
598 // Send one empty static block to give enough lookahead for inflate. | |
599 // This takes 10 bits, of which 7 may remain in the bit buffer. | |
600 // The current inflate code requires 9 bits of lookahead. If the | |
601 // last two codes for the previous block (real code plus EOB) were coded | |
602 // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | |
603 // the last real code. In this case we send two empty static blocks instead | |
604 // of one. (There are no problems if the previous block is stored or fixed.) | |
605 // To simplify the code, we assume the worst case of last real code encoded | |
606 // on one bit only. | |
607 void _tr_align(){ | |
608 send_bits(STATIC_TREES<<1, 3); | |
609 send_code(END_BLOCK, StaticTree.static_ltree); | |
610 | |
611 bi_flush(); | |
612 | |
613 // Of the 10 bits for the empty block, we have already sent | |
614 // (10 - bi_valid) bits. The lookahead for the last real code (before | |
615 // the EOB of the previous block) was thus at least one plus the length | |
616 // of the EOB plus what we have just sent of the empty static block. | |
617 if (1 + last_eob_len + 10 - bi_valid < 9) { | |
618 send_bits(STATIC_TREES<<1, 3); | |
619 send_code(END_BLOCK, StaticTree.static_ltree); | |
620 bi_flush(); | |
621 } | |
622 last_eob_len = 7; | |
623 } | |
624 | |
625 | |
626 // Save the match info and tally the frequency counts. Return true if | |
627 // the current block must be flushed. | |
628 boolean _tr_tally (int dist, // distance of matched string | |
629 int lc // match length-MIN_MATCH or unmatched char (if dist==0) | |
630 ){ | |
631 | |
632 pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8); | |
633 pending_buf[d_buf+last_lit*2+1] = (byte)dist; | |
634 | |
635 l_buf[last_lit] = (byte)lc; last_lit++; | |
636 | |
637 if (dist == 0) { | |
638 // lc is the unmatched char | |
639 dyn_ltree[lc*2]++; | |
640 } | |
641 else { | |
642 matches++; | |
643 // Here, lc is the match length - MIN_MATCH | |
644 dist--; // dist = match distance - 1 | |
645 dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++; | |
646 dyn_dtree[Tree.d_code(dist)*2]++; | |
647 } | |
648 | |
649 if ((last_lit & 0x1fff) == 0 && level > 2) { | |
650 // Compute an upper bound for the compressed length | |
651 int out_length = last_lit*8; | |
652 int in_length = strstart - block_start; | |
653 int dcode; | |
654 for (dcode = 0; dcode < D_CODES; dcode++) { | |
655 out_length += (int)dyn_dtree[dcode*2] * | |
656 (5L+Tree.extra_dbits[dcode]); | |
657 } | |
658 out_length >>>= 3; | |
659 if ((matches < (last_lit/2)) && out_length < in_length/2) return true; | |
660 } | |
661 | |
662 return (last_lit == lit_bufsize-1); | |
663 // We avoid equality with lit_bufsize because of wraparound at 64K | |
664 // on 16 bit machines and because stored blocks are restricted to | |
665 // 64K-1 bytes. | |
666 } | |
667 | |
668 // Send the block data compressed using the given Huffman trees | |
669 void compress_block(short[] ltree, short[] dtree){ | |
670 int dist; // distance of matched string | |
671 int lc; // match length or unmatched char (if dist == 0) | |
672 int lx = 0; // running index in l_buf | |
673 int code; // the code to send | |
674 int extra; // number of extra bits to send | |
675 | |
676 if (last_lit != 0){ | |
677 do{ | |
678 dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)| | |
679 (pending_buf[d_buf+lx*2+1]&0xff); | |
680 lc=(l_buf[lx])&0xff; lx++; | |
681 | |
682 if(dist == 0){ | |
683 send_code(lc, ltree); // send a literal byte | |
684 } | |
685 else{ | |
686 // Here, lc is the match length - MIN_MATCH | |
687 code = Tree._length_code[lc]; | |
688 | |
689 send_code(code+LITERALS+1, ltree); // send the length code | |
690 extra = Tree.extra_lbits[code]; | |
691 if(extra != 0){ | |
692 lc -= Tree.base_length[code]; | |
693 send_bits(lc, extra); // send the extra length bits | |
694 } | |
695 dist--; // dist is now the match distance - 1 | |
696 code = Tree.d_code(dist); | |
697 | |
698 send_code(code, dtree); // send the distance code | |
699 extra = Tree.extra_dbits[code]; | |
700 if (extra != 0) { | |
701 dist -= Tree.base_dist[code]; | |
702 send_bits(dist, extra); // send the extra distance bits | |
703 } | |
704 } // literal or match pair ? | |
705 | |
706 // Check that the overlay between pending_buf and d_buf+l_buf is ok: | |
707 } | |
708 while (lx < last_lit); | |
709 } | |
710 | |
711 send_code(END_BLOCK, ltree); | |
712 last_eob_len = ltree[END_BLOCK*2+1]; | |
713 } | |
714 | |
715 // Set the data type to ASCII or BINARY, using a crude approximation: | |
716 // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | |
717 // IN assertion: the fields freq of dyn_ltree are set and the total of all | |
718 // frequencies does not exceed 64K (to fit in an int on 16 bit machines). | |
719 void set_data_type(){ | |
720 int n = 0; | |
721 int ascii_freq = 0; | |
722 int bin_freq = 0; | |
723 while(n<7){ bin_freq += dyn_ltree[n*2]; n++;} | |
724 while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;} | |
725 while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;} | |
726 data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII); | |
727 } | |
728 | |
729 // Flush the bit buffer, keeping at most 7 bits in it. | |
730 void bi_flush(){ | |
731 if (bi_valid == 16) { | |
732 put_short(bi_buf); | |
733 bi_buf=0; | |
734 bi_valid=0; | |
735 } | |
736 else if (bi_valid >= 8) { | |
737 put_byte((byte)bi_buf); | |
738 bi_buf>>>=8; | |
739 bi_valid-=8; | |
740 } | |
741 } | |
742 | |
743 // Flush the bit buffer and align the output on a byte boundary | |
744 void bi_windup(){ | |
745 if (bi_valid > 8) { | |
746 put_short(bi_buf); | |
747 } else if (bi_valid > 0) { | |
748 put_byte((byte)bi_buf); | |
749 } | |
750 bi_buf = 0; | |
751 bi_valid = 0; | |
752 } | |
753 | |
754 // Copy a stored block, storing first the length and its | |
755 // one's complement if requested. | |
756 void copy_block(int buf, // the input data | |
757 int len, // its length | |
758 boolean header // true if block header must be written | |
759 ){ | |
760 int index=0; | |
761 bi_windup(); // align on byte boundary | |
762 last_eob_len = 8; // enough lookahead for inflate | |
763 | |
764 if (header) { | |
765 put_short((short)len); | |
766 put_short((short)~len); | |
767 } | |
768 | |
769 // while(len--!=0) { | |
770 // put_byte(window[buf+index]); | |
771 // index++; | |
772 // } | |
773 put_byte(window, buf, len); | |
774 } | |
775 | |
776 void flush_block_only(boolean eof){ | |
777 _tr_flush_block(block_start>=0 ? block_start : -1, | |
778 strstart-block_start, | |
779 eof); | |
780 block_start=strstart; | |
781 strm.flush_pending(); | |
782 } | |
783 | |
784 // Copy without compression as much as possible from the input stream, return | |
785 // the current block state. | |
786 // This function does not insert new strings in the dictionary since | |
787 // uncompressible data is probably not useful. This function is used | |
788 // only for the level=0 compression option. | |
789 // NOTE: this function should be optimized to avoid extra copying from | |
790 // window to pending_buf. | |
791 int deflate_stored(int flush){ | |
792 // Stored blocks are limited to 0xffff bytes, pending_buf is limited | |
793 // to pending_buf_size, and each stored block has a 5 byte header: | |
794 | |
795 int max_block_size = 0xffff; | |
796 int max_start; | |
797 | |
798 if(max_block_size > pending_buf_size - 5) { | |
799 max_block_size = pending_buf_size - 5; | |
800 } | |
801 | |
802 // Copy as much as possible from input to output: | |
803 while(true){ | |
804 // Fill the window as much as possible: | |
805 if(lookahead<=1){ | |
806 fill_window(); | |
807 if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore; | |
808 if(lookahead==0) break; // flush the current block | |
809 } | |
810 | |
811 strstart+=lookahead; | |
812 lookahead=0; | |
813 | |
814 // Emit a stored block if pending_buf will be full: | |
815 max_start=block_start+max_block_size; | |
816 if(strstart==0|| strstart>=max_start) { | |
817 // strstart == 0 is possible when wraparound on 16-bit machine | |
818 lookahead = (int)(strstart-max_start); | |
819 strstart = (int)max_start; | |
820 | |
821 flush_block_only(false); | |
822 if(strm.avail_out==0) return NeedMore; | |
823 | |
824 } | |
825 | |
826 // Flush if we may have to slide, otherwise block_start may become | |
827 // negative and the data will be gone: | |
828 if(strstart-block_start >= w_size-MIN_LOOKAHEAD) { | |
829 flush_block_only(false); | |
830 if(strm.avail_out==0) return NeedMore; | |
831 } | |
832 } | |
833 | |
834 flush_block_only(flush == Z_FINISH); | |
835 if(strm.avail_out==0) | |
836 return (flush == Z_FINISH) ? FinishStarted : NeedMore; | |
837 | |
838 return flush == Z_FINISH ? FinishDone : BlockDone; | |
839 } | |
840 | |
841 // Send a stored block | |
842 void _tr_stored_block(int buf, // input block | |
843 int stored_len, // length of input block | |
844 boolean eof // true if this is the last block for a file | |
845 ){ | |
846 send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type | |
847 copy_block(buf, stored_len, true); // with header | |
848 } | |
849 | |
850 // Determine the best encoding for the current block: dynamic trees, static | |
851 // trees or store, and output the encoded block to the zip file. | |
852 void _tr_flush_block(int buf, // input block, or NULL if too old | |
853 int stored_len, // length of input block | |
854 boolean eof // true if this is the last block for a file | |
855 ) { | |
856 int opt_lenb, static_lenb;// opt_len and static_len in bytes | |
857 int max_blindex = 0; // index of last bit length code of non zero freq | |
858 | |
859 // Build the Huffman trees unless a stored block is forced | |
860 if(level > 0) { | |
861 // Check if the file is ascii or binary | |
862 if(data_type == Z_UNKNOWN) set_data_type(); | |
863 | |
864 // Construct the literal and distance trees | |
865 l_desc.build_tree(this); | |
866 | |
867 d_desc.build_tree(this); | |
868 | |
869 // At this point, opt_len and static_len are the total bit lengths of | |
870 // the compressed block data, excluding the tree representations. | |
871 | |
872 // Build the bit length tree for the above two trees, and get the index | |
873 // in bl_order of the last bit length code to send. | |
874 max_blindex=build_bl_tree(); | |
875 | |
876 // Determine the best encoding. Compute first the block length in bytes | |
877 opt_lenb=(opt_len+3+7)>>>3; | |
878 static_lenb=(static_len+3+7)>>>3; | |
879 | |
880 if(static_lenb<=opt_lenb) opt_lenb=static_lenb; | |
881 } | |
882 else { | |
883 opt_lenb=static_lenb=stored_len+5; // force a stored block | |
884 } | |
885 | |
886 if(stored_len+4<=opt_lenb && buf != -1){ | |
887 // 4: two words for the lengths | |
888 // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
889 // Otherwise we can't have processed more than WSIZE input bytes since | |
890 // the last block flush, because compression would have been | |
891 // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
892 // transform a block into a stored block. | |
893 _tr_stored_block(buf, stored_len, eof); | |
894 } | |
895 else if(static_lenb == opt_lenb){ | |
896 send_bits((STATIC_TREES<<1)+(eof?1:0), 3); | |
897 compress_block(StaticTree.static_ltree, StaticTree.static_dtree); | |
898 } | |
899 else{ | |
900 send_bits((DYN_TREES<<1)+(eof?1:0), 3); | |
901 send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1); | |
902 compress_block(dyn_ltree, dyn_dtree); | |
903 } | |
904 | |
905 // The above check is made mod 2^32, for files larger than 512 MB | |
906 // and uLong implemented on 32 bits. | |
907 | |
908 init_block(); | |
909 | |
910 if(eof){ | |
911 bi_windup(); | |
912 } | |
913 } | |
914 | |
915 // Fill the window when the lookahead becomes insufficient. | |
916 // Updates strstart and lookahead. | |
917 // | |
918 // IN assertion: lookahead < MIN_LOOKAHEAD | |
919 // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
920 // At least one byte has been read, or avail_in == 0; reads are | |
921 // performed for at least two bytes (required for the zip translate_eol | |
922 // option -- not supported here). | |
923 void fill_window(){ | |
924 int n, m; | |
925 int p; | |
926 int more; // Amount of free space at the end of the window. | |
927 | |
928 do{ | |
929 more = (window_size-lookahead-strstart); | |
930 | |
931 // Deal with !@#$% 64K limit: | |
932 if(more==0 && strstart==0 && lookahead==0){ | |
933 more = w_size; | |
934 } | |
935 else if(more==-1) { | |
936 // Very unlikely, but possible on 16 bit machine if strstart == 0 | |
937 // and lookahead == 1 (input done one byte at time) | |
938 more--; | |
939 | |
940 // If the window is almost full and there is insufficient lookahead, | |
941 // move the upper half to the lower one to make room in the upper half. | |
942 } | |
943 else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) { | |
944 System.arraycopy(window, w_size, window, 0, w_size); | |
945 match_start-=w_size; | |
946 strstart-=w_size; // we now have strstart >= MAX_DIST | |
947 block_start-=w_size; | |
948 | |
949 // Slide the hash table (could be avoided with 32 bit values | |
950 // at the expense of memory usage). We slide even when level == 0 | |
951 // to keep the hash table consistent if we switch back to level > 0 | |
952 // later. (Using level 0 permanently is not an optimal usage of | |
953 // zlib, so we don't care about this pathological case.) | |
954 | |
955 n = hash_size; | |
956 p=n; | |
957 do { | |
958 m = (head[--p]&0xffff); | |
959 head[p]=(m>=w_size ? (short)(m-w_size) : 0); | |
960 } | |
961 while (--n != 0); | |
962 | |
963 n = w_size; | |
964 p = n; | |
965 do { | |
966 m = (prev[--p]&0xffff); | |
967 prev[p] = (m >= w_size ? (short)(m-w_size) : 0); | |
968 // If n is not on any hash chain, prev[n] is garbage but | |
969 // its value will never be used. | |
970 } | |
971 while (--n!=0); | |
972 more += w_size; | |
973 } | |
974 | |
975 if (strm.avail_in == 0) return; | |
976 | |
977 // If there was no sliding: | |
978 // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
979 // more == window_size - lookahead - strstart | |
980 // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
981 // => more >= window_size - 2*WSIZE + 2 | |
982 // In the BIG_MEM or MMAP case (not yet supported), | |
983 // window_size == input_size + MIN_LOOKAHEAD && | |
984 // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
985 // Otherwise, window_size == 2*WSIZE so more >= 2. | |
986 // If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
987 | |
988 n = strm.read_buf(window, strstart + lookahead, more); | |
989 lookahead += n; | |
990 | |
991 // Initialize the hash value now that we have some input: | |
992 if(lookahead >= MIN_MATCH) { | |
993 ins_h = window[strstart]&0xff; | |
994 ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; | |
995 } | |
996 // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
997 // but this is not important since only literal bytes will be emitted. | |
998 } | |
999 while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0); | |
1000 } | |
1001 | |
1002 // Compress as much as possible from the input stream, return the current | |
1003 // block state. | |
1004 // This function does not perform lazy evaluation of matches and inserts | |
1005 // new strings in the dictionary only for unmatched strings or for short | |
1006 // matches. It is used only for the fast compression options. | |
1007 int deflate_fast(int flush){ | |
1008 // short hash_head = 0; // head of the hash chain | |
1009 int hash_head = 0; // head of the hash chain | |
1010 boolean bflush; // set if current block must be flushed | |
1011 | |
1012 while(true){ | |
1013 // Make sure that we always have enough lookahead, except | |
1014 // at the end of the input file. We need MAX_MATCH bytes | |
1015 // for the next match, plus MIN_MATCH bytes to insert the | |
1016 // string following the next match. | |
1017 if(lookahead < MIN_LOOKAHEAD){ | |
1018 fill_window(); | |
1019 if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){ | |
1020 return NeedMore; | |
1021 } | |
1022 if(lookahead == 0) break; // flush the current block | |
1023 } | |
1024 | |
1025 // Insert the string window[strstart .. strstart+2] in the | |
1026 // dictionary, and set hash_head to the head of the hash chain: | |
1027 if(lookahead >= MIN_MATCH){ | |
1028 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1029 | |
1030 // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1031 hash_head=(head[ins_h]&0xffff); | |
1032 prev[strstart&w_mask]=head[ins_h]; | |
1033 head[ins_h]=(short)strstart; | |
1034 } | |
1035 | |
1036 // Find the longest match, discarding those <= prev_length. | |
1037 // At this point we have always match_length < MIN_MATCH | |
1038 | |
1039 if(hash_head!=0L && | |
1040 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD | |
1041 ){ | |
1042 // To simplify the code, we prevent matches with the string | |
1043 // of window index 0 (in particular we have to avoid a match | |
1044 // of the string with itself at the start of the input file). | |
1045 if(strategy != Z_HUFFMAN_ONLY){ | |
1046 match_length=longest_match (hash_head); | |
1047 } | |
1048 // longest_match() sets match_start | |
1049 } | |
1050 if(match_length>=MIN_MATCH){ | |
1051 // check_match(strstart, match_start, match_length); | |
1052 | |
1053 bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH); | |
1054 | |
1055 lookahead -= match_length; | |
1056 | |
1057 // Insert new strings in the hash table only if the match length | |
1058 // is not too large. This saves time but degrades compression. | |
1059 if(match_length <= max_lazy_match && | |
1060 lookahead >= MIN_MATCH) { | |
1061 match_length--; // string at strstart already in hash table | |
1062 do{ | |
1063 strstart++; | |
1064 | |
1065 ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1066 // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1067 hash_head=(head[ins_h]&0xffff); | |
1068 prev[strstart&w_mask]=head[ins_h]; | |
1069 head[ins_h]=(short)strstart; | |
1070 | |
1071 // strstart never exceeds WSIZE-MAX_MATCH, so there are | |
1072 // always MIN_MATCH bytes ahead. | |
1073 } | |
1074 while (--match_length != 0); | |
1075 strstart++; | |
1076 } | |
1077 else{ | |
1078 strstart += match_length; | |
1079 match_length = 0; | |
1080 ins_h = window[strstart]&0xff; | |
1081 | |
1082 ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask; | |
1083 // If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
1084 // matter since it will be recomputed at next deflate call. | |
1085 } | |
1086 } | |
1087 else { | |
1088 // No match, output a literal byte | |
1089 | |
1090 bflush=_tr_tally(0, window[strstart]&0xff); | |
1091 lookahead--; | |
1092 strstart++; | |
1093 } | |
1094 if (bflush){ | |
1095 | |
1096 flush_block_only(false); | |
1097 if(strm.avail_out==0) return NeedMore; | |
1098 } | |
1099 } | |
1100 | |
1101 flush_block_only(flush == Z_FINISH); | |
1102 if(strm.avail_out==0){ | |
1103 if(flush == Z_FINISH) return FinishStarted; | |
1104 else return NeedMore; | |
1105 } | |
1106 return flush==Z_FINISH ? FinishDone : BlockDone; | |
1107 } | |
1108 | |
1109 // Same as above, but achieves better compression. We use a lazy | |
1110 // evaluation for matches: a match is finally adopted only if there is | |
1111 // no better match at the next window position. | |
1112 int deflate_slow(int flush){ | |
1113 // short hash_head = 0; // head of hash chain | |
1114 int hash_head = 0; // head of hash chain | |
1115 boolean bflush; // set if current block must be flushed | |
1116 | |
1117 // Process the input block. | |
1118 while(true){ | |
1119 // Make sure that we always have enough lookahead, except | |
1120 // at the end of the input file. We need MAX_MATCH bytes | |
1121 // for the next match, plus MIN_MATCH bytes to insert the | |
1122 // string following the next match. | |
1123 | |
1124 if (lookahead < MIN_LOOKAHEAD) { | |
1125 fill_window(); | |
1126 if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1127 return NeedMore; | |
1128 } | |
1129 if(lookahead == 0) break; // flush the current block | |
1130 } | |
1131 | |
1132 // Insert the string window[strstart .. strstart+2] in the | |
1133 // dictionary, and set hash_head to the head of the hash chain: | |
1134 | |
1135 if(lookahead >= MIN_MATCH) { | |
1136 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask; | |
1137 // prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1138 hash_head=(head[ins_h]&0xffff); | |
1139 prev[strstart&w_mask]=head[ins_h]; | |
1140 head[ins_h]=(short)strstart; | |
1141 } | |
1142 | |
1143 // Find the longest match, discarding those <= prev_length. | |
1144 prev_length = match_length; prev_match = match_start; | |
1145 match_length = MIN_MATCH-1; | |
1146 | |
1147 if (hash_head != 0 && prev_length < max_lazy_match && | |
1148 ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD | |
1149 ){ | |
1150 // To simplify the code, we prevent matches with the string | |
1151 // of window index 0 (in particular we have to avoid a match | |
1152 // of the string with itself at the start of the input file). | |
1153 | |
1154 if(strategy != Z_HUFFMAN_ONLY) { | |
1155 match_length = longest_match(hash_head); | |
1156 } | |
1157 // longest_match() sets match_start | |
1158 | |
1159 if (match_length <= 5 && (strategy == Z_FILTERED || | |
1160 (match_length == MIN_MATCH && | |
1161 strstart - match_start > 4096))) { | |
1162 | |
1163 // If prev_match is also MIN_MATCH, match_start is garbage | |
1164 // but we will ignore the current match anyway. | |
1165 match_length = MIN_MATCH-1; | |
1166 } | |
1167 } | |
1168 | |
1169 // If there was a match at the previous step and the current | |
1170 // match is not better, output the previous match: | |
1171 if(prev_length >= MIN_MATCH && match_length <= prev_length) { | |
1172 int max_insert = strstart + lookahead - MIN_MATCH; | |
1173 // Do not insert strings in hash table beyond this. | |
1174 | |
1175 // check_match(strstart-1, prev_match, prev_length); | |
1176 | |
1177 bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH); | |
1178 | |
1179 // Insert in hash table all strings up to the end of the match. | |
1180 // strstart-1 and strstart are already inserted. If there is not | |
1181 // enough lookahead, the last two strings are not inserted in | |
1182 // the hash table. | |
1183 lookahead -= prev_length-1; | |
1184 prev_length -= 2; | |
1185 do{ | |
1186 if(++strstart <= max_insert) { | |
1187 ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1188 //prev[strstart&w_mask]=hash_head=head[ins_h]; | |
1189 hash_head=(head[ins_h]&0xffff); | |
1190 prev[strstart&w_mask]=head[ins_h]; | |
1191 head[ins_h]=(short)strstart; | |
1192 } | |
1193 } | |
1194 while(--prev_length != 0); | |
1195 match_available = 0; | |
1196 match_length = MIN_MATCH-1; | |
1197 strstart++; | |
1198 | |
1199 if (bflush){ | |
1200 flush_block_only(false); | |
1201 if(strm.avail_out==0) return NeedMore; | |
1202 } | |
1203 } else if (match_available!=0) { | |
1204 | |
1205 // If there was no match at the previous position, output a | |
1206 // single literal. If there was a match but the current match | |
1207 // is longer, truncate the previous match to a single literal. | |
1208 | |
1209 bflush=_tr_tally(0, window[strstart-1]&0xff); | |
1210 | |
1211 if (bflush) { | |
1212 flush_block_only(false); | |
1213 } | |
1214 strstart++; | |
1215 lookahead--; | |
1216 if(strm.avail_out == 0) return NeedMore; | |
1217 } else { | |
1218 // There is no previous match to compare with, wait for | |
1219 // the next step to decide. | |
1220 | |
1221 match_available = 1; | |
1222 strstart++; | |
1223 lookahead--; | |
1224 } | |
1225 } | |
1226 | |
1227 if(match_available!=0) { | |
1228 bflush=_tr_tally(0, window[strstart-1]&0xff); | |
1229 match_available = 0; | |
1230 } | |
1231 flush_block_only(flush == Z_FINISH); | |
1232 | |
1233 if(strm.avail_out==0){ | |
1234 if(flush == Z_FINISH) return FinishStarted; | |
1235 else return NeedMore; | |
1236 } | |
1237 | |
1238 return flush == Z_FINISH ? FinishDone : BlockDone; | |
1239 } | |
1240 | |
1241 int longest_match(int cur_match){ | |
1242 int chain_length = max_chain_length; // max hash chain length | |
1243 int scan = strstart; // current string | |
1244 int match; // matched string | |
1245 int len; // length of current match | |
1246 int best_len = prev_length; // best match length so far | |
1247 int limit = strstart>(w_size-MIN_LOOKAHEAD) ? | |
1248 strstart-(w_size-MIN_LOOKAHEAD) : 0; | |
1249 int nice_match=this.nice_match; | |
1250 | |
1251 // Stop when cur_match becomes <= limit. To simplify the code, | |
1252 // we prevent matches with the string of window index 0. | |
1253 | |
1254 int wmask = w_mask; | |
1255 | |
1256 int strend = strstart + MAX_MATCH; | |
1257 byte scan_end1 = window[scan+best_len-1]; | |
1258 byte scan_end = window[scan+best_len]; | |
1259 | |
1260 // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
1261 // It is easy to get rid of this optimization if necessary. | |
1262 | |
1263 // Do not waste too much time if we already have a good match: | |
1264 if (prev_length >= good_match) { | |
1265 chain_length >>= 2; | |
1266 } | |
1267 | |
1268 // Do not look for matches beyond the end of the input. This is necessary | |
1269 // to make deflate deterministic. | |
1270 if (nice_match > lookahead) nice_match = lookahead; | |
1271 | |
1272 do { | |
1273 match = cur_match; | |
1274 | |
1275 // Skip to next match if the match length cannot increase | |
1276 // or if the match length is less than 2: | |
1277 if (window[match+best_len] != scan_end || | |
1278 window[match+best_len-1] != scan_end1 || | |
1279 window[match] != window[scan] || | |
1280 window[++match] != window[scan+1]) continue; | |
1281 | |
1282 // The check at best_len-1 can be removed because it will be made | |
1283 // again later. (This heuristic is not always a win.) | |
1284 // It is not necessary to compare scan[2] and match[2] since they | |
1285 // are always equal when the other bytes match, given that | |
1286 // the hash keys are equal and that HASH_BITS >= 8. | |
1287 scan += 2; match++; | |
1288 | |
1289 // We check for insufficient lookahead only every 8th comparison; | |
1290 // the 256th check will be made at strstart+258. | |
1291 do { | |
1292 } while (window[++scan] == window[++match] && | |
1293 window[++scan] == window[++match] && | |
1294 window[++scan] == window[++match] && | |
1295 window[++scan] == window[++match] && | |
1296 window[++scan] == window[++match] && | |
1297 window[++scan] == window[++match] && | |
1298 window[++scan] == window[++match] && | |
1299 window[++scan] == window[++match] && | |
1300 scan < strend); | |
1301 | |
1302 len = MAX_MATCH - (int)(strend - scan); | |
1303 scan = strend - MAX_MATCH; | |
1304 | |
1305 if(len>best_len) { | |
1306 match_start = cur_match; | |
1307 best_len = len; | |
1308 if (len >= nice_match) break; | |
1309 scan_end1 = window[scan+best_len-1]; | |
1310 scan_end = window[scan+best_len]; | |
1311 } | |
1312 | |
1313 } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit | |
1314 && --chain_length != 0); | |
1315 | |
1316 if (best_len <= lookahead) return best_len; | |
1317 return lookahead; | |
1318 } | |
1319 | |
1320 int deflateInit(int level, int bits, int memlevel){ | |
1321 return deflateInit(level, Z_DEFLATED, bits, memlevel, | |
1322 Z_DEFAULT_STRATEGY); | |
1323 } | |
1324 | |
1325 int deflateInit(int level, int bits){ | |
1326 return deflateInit(level, Z_DEFLATED, bits, DEF_MEM_LEVEL, | |
1327 Z_DEFAULT_STRATEGY); | |
1328 } | |
1329 int deflateInit(int level){ | |
1330 return deflateInit(level, MAX_WBITS); | |
1331 } | |
1332 private int deflateInit(int level, int method, int windowBits, | |
1333 int memLevel, int strategy){ | |
1334 int wrap = 1; | |
1335 // byte[] my_version=ZLIB_VERSION; | |
1336 | |
1337 // | |
1338 // if (version == null || version[0] != my_version[0] | |
1339 // || stream_size != sizeof(z_stream)) { | |
1340 // return Z_VERSION_ERROR; | |
1341 // } | |
1342 | |
1343 strm.msg = null; | |
1344 | |
1345 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
1346 | |
1347 if (windowBits < 0) { // undocumented feature: suppress zlib header | |
1348 wrap = 0; | |
1349 windowBits = -windowBits; | |
1350 } | |
1351 else if(windowBits > 15){ | |
1352 wrap = 2; | |
1353 windowBits -= 16; | |
1354 strm.adler=new CRC32(); | |
1355 } | |
1356 | |
1357 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || | |
1358 method != Z_DEFLATED || | |
1359 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || | |
1360 strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | |
1361 return Z_STREAM_ERROR; | |
1362 } | |
1363 | |
1364 strm.dstate = (Deflate)this; | |
1365 | |
1366 this.wrap = wrap; | |
1367 w_bits = windowBits; | |
1368 w_size = 1 << w_bits; | |
1369 w_mask = w_size - 1; | |
1370 | |
1371 hash_bits = memLevel + 7; | |
1372 hash_size = 1 << hash_bits; | |
1373 hash_mask = hash_size - 1; | |
1374 hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH); | |
1375 | |
1376 window = new byte[w_size*2]; | |
1377 prev = new short[w_size]; | |
1378 head = new short[hash_size]; | |
1379 | |
1380 lit_bufsize = 1 << (memLevel + 6); // 16K elements by default | |
1381 | |
1382 // We overlay pending_buf and d_buf+l_buf. This works since the average | |
1383 // output size for (length,distance) codes is <= 24 bits. | |
1384 pending_buf = new byte[lit_bufsize*3]; | |
1385 pending_buf_size = lit_bufsize*3; | |
1386 | |
1387 d_buf = lit_bufsize; | |
1388 l_buf = new byte[lit_bufsize]; | |
1389 | |
1390 this.level = level; | |
1391 | |
1392 this.strategy = strategy; | |
1393 this.method = (byte)method; | |
1394 | |
1395 return deflateReset(); | |
1396 } | |
1397 | |
1398 int deflateReset(){ | |
1399 strm.total_in = strm.total_out = 0; | |
1400 strm.msg = null; // | |
1401 strm.data_type = Z_UNKNOWN; | |
1402 | |
1403 pending = 0; | |
1404 pending_out = 0; | |
1405 | |
1406 if(wrap < 0){ | |
1407 wrap = -wrap; | |
1408 } | |
1409 status = (wrap==0) ? BUSY_STATE : INIT_STATE; | |
1410 strm.adler.reset(); | |
1411 | |
1412 last_flush = Z_NO_FLUSH; | |
1413 | |
1414 tr_init(); | |
1415 lm_init(); | |
1416 return Z_OK; | |
1417 } | |
1418 | |
1419 int deflateEnd(){ | |
1420 if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){ | |
1421 return Z_STREAM_ERROR; | |
1422 } | |
1423 // Deallocate in reverse order of allocations: | |
1424 pending_buf=null; | |
1425 l_buf=null; | |
1426 head=null; | |
1427 prev=null; | |
1428 window=null; | |
1429 // free | |
1430 // dstate=null; | |
1431 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
1432 } | |
1433 | |
1434 int deflateParams(int _level, int _strategy){ | |
1435 int err=Z_OK; | |
1436 | |
1437 if(_level == Z_DEFAULT_COMPRESSION){ | |
1438 _level = 6; | |
1439 } | |
1440 if(_level < 0 || _level > 9 || | |
1441 _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) { | |
1442 return Z_STREAM_ERROR; | |
1443 } | |
1444 | |
1445 if(config_table[level].func!=config_table[_level].func && | |
1446 strm.total_in != 0) { | |
1447 // Flush the last buffer: | |
1448 err = strm.deflate(Z_PARTIAL_FLUSH); | |
1449 } | |
1450 | |
1451 if(level != _level) { | |
1452 level = _level; | |
1453 max_lazy_match = config_table[level].max_lazy; | |
1454 good_match = config_table[level].good_length; | |
1455 nice_match = config_table[level].nice_length; | |
1456 max_chain_length = config_table[level].max_chain; | |
1457 } | |
1458 strategy = _strategy; | |
1459 return err; | |
1460 } | |
1461 | |
1462 int deflateSetDictionary (byte[] dictionary, int dictLength){ | |
1463 int length = dictLength; | |
1464 int index=0; | |
1465 | |
1466 if(dictionary == null || status != INIT_STATE) | |
1467 return Z_STREAM_ERROR; | |
1468 | |
1469 strm.adler.update(dictionary, 0, dictLength); | |
1470 | |
1471 if(length < MIN_MATCH) return Z_OK; | |
1472 if(length > w_size-MIN_LOOKAHEAD){ | |
1473 length = w_size-MIN_LOOKAHEAD; | |
1474 index=dictLength-length; // use the tail of the dictionary | |
1475 } | |
1476 System.arraycopy(dictionary, index, window, 0, length); | |
1477 strstart = length; | |
1478 block_start = length; | |
1479 | |
1480 // Insert all strings in the hash table (except for the last two bytes). | |
1481 // s->lookahead stays null, so s->ins_h will be recomputed at the next | |
1482 // call of fill_window. | |
1483 | |
1484 ins_h = window[0]&0xff; | |
1485 ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask; | |
1486 | |
1487 for(int n=0; n<=length-MIN_MATCH; n++){ | |
1488 ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask; | |
1489 prev[n&w_mask]=head[ins_h]; | |
1490 head[ins_h]=(short)n; | |
1491 } | |
1492 return Z_OK; | |
1493 } | |
1494 | |
1495 int deflate(int flush){ | |
1496 int old_flush; | |
1497 | |
1498 if(flush>Z_FINISH || flush<0){ | |
1499 return Z_STREAM_ERROR; | |
1500 } | |
1501 | |
1502 if(strm.next_out == null || | |
1503 (strm.next_in == null && strm.avail_in != 0) || | |
1504 (status == FINISH_STATE && flush != Z_FINISH)) { | |
1505 strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)]; | |
1506 return Z_STREAM_ERROR; | |
1507 } | |
1508 if(strm.avail_out == 0){ | |
1509 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; | |
1510 return Z_BUF_ERROR; | |
1511 } | |
1512 | |
1513 old_flush = last_flush; | |
1514 last_flush = flush; | |
1515 | |
1516 // Write the zlib header | |
1517 if(status == INIT_STATE) { | |
1518 if(wrap == 2){ | |
1519 getGZIPHeader().put(this); | |
1520 status=BUSY_STATE; | |
1521 strm.adler.reset(); | |
1522 } | |
1523 else{ | |
1524 int header = (Z_DEFLATED+((w_bits-8)<<4))<<8; | |
1525 int level_flags=((level-1)&0xff)>>1; | |
1526 | |
1527 if(level_flags>3) level_flags=3; | |
1528 header |= (level_flags<<6); | |
1529 if(strstart!=0) header |= PRESET_DICT; | |
1530 header+=31-(header % 31); | |
1531 | |
1532 status=BUSY_STATE; | |
1533 putShortMSB(header); | |
1534 | |
1535 | |
1536 // Save the adler32 of the preset dictionary: | |
1537 if(strstart!=0){ | |
1538 long adler=strm.adler.getValue(); | |
1539 putShortMSB((int)(adler>>>16)); | |
1540 putShortMSB((int)(adler&0xffff)); | |
1541 } | |
1542 strm.adler.reset(); | |
1543 } | |
1544 } | |
1545 | |
1546 // Flush as much pending output as possible | |
1547 if(pending != 0) { | |
1548 strm.flush_pending(); | |
1549 if(strm.avail_out == 0) { | |
1550 // Since avail_out is 0, deflate will be called again with | |
1551 // more output space, but possibly with both pending and | |
1552 // avail_in equal to zero. There won't be anything to do, | |
1553 // but this is not an error situation so make sure we | |
1554 // return OK instead of BUF_ERROR at next call of deflate: | |
1555 last_flush = -1; | |
1556 return Z_OK; | |
1557 } | |
1558 | |
1559 // Make sure there is something to do and avoid duplicate consecutive | |
1560 // flushes. For repeated and useless calls with Z_FINISH, we keep | |
1561 // returning Z_STREAM_END instead of Z_BUFF_ERROR. | |
1562 } | |
1563 else if(strm.avail_in==0 && flush <= old_flush && | |
1564 flush != Z_FINISH) { | |
1565 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; | |
1566 return Z_BUF_ERROR; | |
1567 } | |
1568 | |
1569 // User must not provide more input after the first FINISH: | |
1570 if(status == FINISH_STATE && strm.avail_in != 0) { | |
1571 strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)]; | |
1572 return Z_BUF_ERROR; | |
1573 } | |
1574 | |
1575 // Start a new block or continue the current one. | |
1576 if(strm.avail_in!=0 || lookahead!=0 || | |
1577 (flush != Z_NO_FLUSH && status != FINISH_STATE)) { | |
1578 int bstate=-1; | |
1579 switch(config_table[level].func){ | |
1580 case STORED: | |
1581 bstate = deflate_stored(flush); | |
1582 break; | |
1583 case FAST: | |
1584 bstate = deflate_fast(flush); | |
1585 break; | |
1586 case SLOW: | |
1587 bstate = deflate_slow(flush); | |
1588 break; | |
1589 default: | |
1590 } | |
1591 | |
1592 if (bstate==FinishStarted || bstate==FinishDone) { | |
1593 status = FINISH_STATE; | |
1594 } | |
1595 if (bstate==NeedMore || bstate==FinishStarted) { | |
1596 if(strm.avail_out == 0) { | |
1597 last_flush = -1; // avoid BUF_ERROR next call, see above | |
1598 } | |
1599 return Z_OK; | |
1600 // If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
1601 // of deflate should use the same flush parameter to make sure | |
1602 // that the flush is complete. So we don't have to output an | |
1603 // empty block here, this will be done at next call. This also | |
1604 // ensures that for a very small output buffer, we emit at most | |
1605 // one empty block. | |
1606 } | |
1607 | |
1608 if (bstate==BlockDone) { | |
1609 if(flush == Z_PARTIAL_FLUSH) { | |
1610 _tr_align(); | |
1611 } | |
1612 else { // FULL_FLUSH or SYNC_FLUSH | |
1613 _tr_stored_block(0, 0, false); | |
1614 // For a full flush, this empty block will be recognized | |
1615 // as a special marker by inflate_sync(). | |
1616 if(flush == Z_FULL_FLUSH) { | |
1617 //state.head[s.hash_size-1]=0; | |
1618 for(int i=0; i<hash_size/*-1*/; i++) // forget history | |
1619 head[i]=0; | |
1620 } | |
1621 } | |
1622 strm.flush_pending(); | |
1623 if(strm.avail_out == 0) { | |
1624 last_flush = -1; // avoid BUF_ERROR at next call, see above | |
1625 return Z_OK; | |
1626 } | |
1627 } | |
1628 } | |
1629 | |
1630 if(flush!=Z_FINISH) return Z_OK; | |
1631 if(wrap<=0) return Z_STREAM_END; | |
1632 | |
1633 if(wrap==2){ | |
1634 long adler=strm.adler.getValue(); | |
1635 put_byte((byte)(adler&0xff)); | |
1636 put_byte((byte)((adler>>8)&0xff)); | |
1637 put_byte((byte)((adler>>16)&0xff)); | |
1638 put_byte((byte)((adler>>24)&0xff)); | |
1639 put_byte((byte)(strm.total_in&0xff)); | |
1640 put_byte((byte)((strm.total_in>>8)&0xff)); | |
1641 put_byte((byte)((strm.total_in>>16)&0xff)); | |
1642 put_byte((byte)((strm.total_in>>24)&0xff)); | |
1643 | |
1644 getGZIPHeader().setCRC(adler); | |
1645 } | |
1646 else{ | |
1647 // Write the zlib trailer (adler32) | |
1648 long adler=strm.adler.getValue(); | |
1649 putShortMSB((int)(adler>>>16)); | |
1650 putShortMSB((int)(adler&0xffff)); | |
1651 } | |
1652 | |
1653 strm.flush_pending(); | |
1654 | |
1655 // If avail_out is zero, the application will call deflate again | |
1656 // to flush the rest. | |
1657 | |
1658 if(wrap > 0) wrap = -wrap; // write the trailer only once! | |
1659 return pending != 0 ? Z_OK : Z_STREAM_END; | |
1660 } | |
1661 | |
1662 static int deflateCopy(ZStream dest, ZStream src){ | |
1663 | |
1664 if(src.dstate == null){ | |
1665 return Z_STREAM_ERROR; | |
1666 } | |
1667 | |
1668 if(src.next_in!=null){ | |
1669 dest.next_in = new byte[src.next_in.length]; | |
1670 System.arraycopy(src.next_in, 0, dest.next_in, 0, src.next_in.length); | |
1671 } | |
1672 dest.next_in_index = src.next_in_index; | |
1673 dest.avail_in = src.avail_in; | |
1674 dest.total_in = src.total_in; | |
1675 | |
1676 if(src.next_out!=null){ | |
1677 dest.next_out = new byte[src.next_out.length]; | |
1678 System.arraycopy(src.next_out, 0, dest.next_out ,0 , src.next_out.length); | |
1679 } | |
1680 | |
1681 dest.next_out_index = src.next_out_index; | |
1682 dest.avail_out = src.avail_out; | |
1683 dest.total_out = src.total_out; | |
1684 | |
1685 dest.msg = src.msg; | |
1686 dest.data_type = src.data_type; | |
1687 dest.adler = src.adler.copy(); | |
1688 | |
1689 try{ | |
1690 dest.dstate = (Deflate)src.dstate.clone(); | |
1691 dest.dstate.strm = dest; | |
1692 } | |
1693 catch(CloneNotSupportedException e){ | |
1694 // | |
1695 } | |
1696 return Z_OK; | |
1697 } | |
1698 | |
1699 public Object clone() throws CloneNotSupportedException { | |
1700 Deflate dest = (Deflate)super.clone(); | |
1701 | |
1702 dest.pending_buf = dup(dest.pending_buf); | |
1703 dest.d_buf = dest.d_buf; | |
1704 dest.l_buf = dup(dest.l_buf); | |
1705 dest.window = dup(dest.window); | |
1706 | |
1707 dest.prev = dup(dest.prev); | |
1708 dest.head = dup(dest.head); | |
1709 dest.dyn_ltree = dup(dest.dyn_ltree); | |
1710 dest.dyn_dtree = dup(dest.dyn_dtree); | |
1711 dest.bl_tree = dup(dest.bl_tree); | |
1712 | |
1713 dest.bl_count = dup(dest.bl_count); | |
1714 dest.next_code = dup(dest.next_code); | |
1715 dest.heap = dup(dest.heap); | |
1716 dest.depth = dup(dest.depth); | |
1717 | |
1718 dest.l_desc.dyn_tree = dest.dyn_ltree; | |
1719 dest.d_desc.dyn_tree = dest.dyn_dtree; | |
1720 dest.bl_desc.dyn_tree = dest.bl_tree; | |
1721 | |
1722 /* | |
1723 dest.l_desc.stat_desc = StaticTree.static_l_desc; | |
1724 dest.d_desc.stat_desc = StaticTree.static_d_desc; | |
1725 dest.bl_desc.stat_desc = StaticTree.static_bl_desc; | |
1726 */ | |
1727 | |
1728 if(dest.gheader!=null){ | |
1729 dest.gheader = (GZIPHeader)dest.gheader.clone(); | |
1730 } | |
1731 | |
1732 return dest; | |
1733 } | |
1734 | |
1735 private byte[] dup(byte[] buf){ | |
1736 byte[] foo = new byte[buf.length]; | |
1737 System.arraycopy(buf, 0, foo, 0, foo.length); | |
1738 return foo; | |
1739 } | |
1740 private short[] dup(short[] buf){ | |
1741 short[] foo = new short[buf.length]; | |
1742 System.arraycopy(buf, 0, foo, 0, foo.length); | |
1743 return foo; | |
1744 } | |
1745 private int[] dup(int[] buf){ | |
1746 int[] foo = new int[buf.length]; | |
1747 System.arraycopy(buf, 0, foo, 0, foo.length); | |
1748 return foo; | |
1749 } | |
1750 | |
1751 synchronized GZIPHeader getGZIPHeader(){ | |
1752 if(gheader==null){ | |
1753 gheader = new GZIPHeader(); | |
1754 } | |
1755 return gheader; | |
1756 } | |
1757 } |