Mercurial > 510Connectbot
view src/com/jcraft/jzlib/InfBlocks.java @ 89:bb27518ac2e9
convert ctrl keys to virtual keys; use proper android home directory
author | Carl Byington <carl@five-ten-sg.com> |
---|---|
date | Mon, 16 Jun 2014 12:31:31 -0700 |
parents | 0ce5cc452d02 |
children | 46c2115ae1c8 |
line wrap: on
line source
/* -*-mode:java; c-basic-offset:2; -*- */ /* Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of the authors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This program is based on zlib-1.1.3, so all credit should go authors * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) * and contributors of zlib. */ package com.jcraft.jzlib; final class InfBlocks { static final private int MANY = 1440; // And'ing with mask[n] masks the lower n bits static final private int[] inflate_mask = { 0x00000000, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff }; // Table for deflate from PKZIP's appnote.txt. static final int[] border = { // Order of the bit length code lengths 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; static final private int Z_OK = 0; static final private int Z_STREAM_END = 1; static final private int Z_NEED_DICT = 2; static final private int Z_ERRNO = -1; static final private int Z_STREAM_ERROR = -2; static final private int Z_DATA_ERROR = -3; static final private int Z_MEM_ERROR = -4; static final private int Z_BUF_ERROR = -5; static final private int Z_VERSION_ERROR = -6; static final private int TYPE = 0; // get type bits (3, including end bit) static final private int LENS = 1; // get lengths for stored static final private int STORED = 2; // processing stored block static final private int TABLE = 3; // get table lengths static final private int BTREE = 4; // get bit lengths tree for a dynamic block static final private int DTREE = 5; // get length, distance trees for a dynamic block static final private int CODES = 6; // processing fixed or dynamic block static final private int DRY = 7; // output remaining window bytes static final private int DONE = 8; // finished last block, done static final private int BAD = 9; // ot a data error--stuck here int mode; // current inflate_block mode int left; // if STORED, bytes left to copy int table; // table lengths (14 bits) int index; // index into blens (or border) int[] blens; // bit lengths of codes int[] bb = new int[1]; // bit length tree depth int[] tb = new int[1]; // bit length decoding tree InfCodes codes = new InfCodes(); // if CODES, current state int last; // true if this block is the last block // mode independent information int bitk; // bits in bit buffer int bitb; // bit buffer int[] hufts; // single malloc for tree space byte[] window; // sliding window int end; // one byte after sliding window int read; // window read pointer int write; // window write pointer Object checkfn; // check function long check; // check on output InfTree inftree = new InfTree(); InfBlocks(ZStream z, Object checkfn, int w) { hufts = new int[MANY * 3]; window = new byte[w]; end = w; this.checkfn = checkfn; mode = TYPE; reset(z, null); } void reset(ZStream z, long[] c) { if (c != null) c[0] = check; if (mode == BTREE || mode == DTREE) { } if (mode == CODES) { codes.free(z); } mode = TYPE; bitk = 0; bitb = 0; read = write = 0; if (checkfn != null) z.adler = check = z._adler.adler32(0L, null, 0, 0); } int proc(ZStream z, int r) { int t; // temporary storage int b; // bit buffer int k; // bits in bit buffer int p; // input data pointer int n; // bytes available there int q; // output window write pointer int m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) {p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk;} {q = write; m = (int)(q < read ? read - q - 1 : end - q);} // process input based on current state while (true) { switch (mode) { case TYPE: while (k < (3)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); }; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } t = (int)(b & 7); last = t & 1; switch (t >>> 1) { case 0: // stored {b >>>= (3); k -= (3);} t = k & 7; // go to byte boundary {b >>>= (t); k -= (t);} mode = LENS; // get length of stored block break; case 1: { // fixed int[] bl = new int[1]; int[] bd = new int[1]; int[][] tl = new int[1][]; int[][] td = new int[1][]; InfTree.inflate_trees_fixed(bl, bd, tl, td, z); codes.init(bl[0], bd[0], tl[0], 0, td[0], 0, z); } {b >>>= (3); k -= (3);} mode = CODES; break; case 2: // dynamic {b >>>= (3); k -= (3);} mode = TABLE; break; case 3: // illegal {b >>>= (3); k -= (3);} mode = BAD; z.msg = "invalid block type"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } break; case LENS: while (k < (32)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); }; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } if ((((~b) >>> 16) & 0xffff) != (b & 0xffff)) { mode = BAD; z.msg = "invalid stored block lengths"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } left = (b & 0xffff); b = k = 0; // dump bits mode = left != 0 ? STORED : (last != 0 ? DRY : TYPE); break; case STORED: if (n == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } if (m == 0) { if (q == end && read != 0) { q = 0; m = (int)(q < read ? read - q - 1 : end - q); } if (m == 0) { write = q; r = inflate_flush(z, r); q = write; m = (int)(q < read ? read - q - 1 : end - q); if (q == end && read != 0) { q = 0; m = (int)(q < read ? read - q - 1 : end - q); } if (m == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } } } r = Z_OK; t = left; if (t > n) t = n; if (t > m) t = m; System.arraycopy(z.next_in, p, window, q, t); p += t; n -= t; q += t; m -= t; if ((left -= t) != 0) break; mode = last != 0 ? DRY : TYPE; break; case TABLE: while (k < (14)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); }; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } table = t = (b & 0x3fff); if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { mode = BAD; z.msg = "too many length or distance symbols"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); if (blens == null || blens.length < t) { blens = new int[t]; } else { for (int i = 0; i < t; i++) {blens[i] = 0;} } {b >>>= (14); k -= (14);} index = 0; mode = BTREE; case BTREE: while (index < 4 + (table >>> 10)) { while (k < (3)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); }; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } blens[border[index++]] = b & 7; {b >>>= (3); k -= (3);} } while (index < 19) { blens[border[index++]] = 0; } bb[0] = 7; t = inftree.inflate_trees_bits(blens, bb, tb, hufts, z); if (t != Z_OK) { r = t; if (r == Z_DATA_ERROR) { blens = null; mode = BAD; } bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } index = 0; mode = DTREE; case DTREE: while (true) { t = table; if (!(index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))) { break; } int[] h; int i, j, c; t = bb[0]; while (k < (t)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); }; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } if (tb[0] == -1) { //System.err.println("null..."); } t = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 1]; c = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 2]; if (c < 16) { b >>>= (t); k -= (t); blens[index++] = c; } else { // c == 16..18 i = c == 18 ? 7 : c - 14; j = c == 18 ? 11 : 3; while (k < (t + i)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); }; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } b >>>= (t); k -= (t); j += (b & inflate_mask[i]); b >>>= (i); k -= (i); i = index; t = table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { blens = null; mode = BAD; z.msg = "invalid bit length repeat"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } c = c == 16 ? blens[i - 1] : 0; do { blens[i++] = c; } while (--j != 0); index = i; } } tb[0] = -1; { int[] bl = new int[1]; int[] bd = new int[1]; int[] tl = new int[1]; int[] td = new int[1]; bl[0] = 9; // must be <= 9 for lookahead assumptions bd[0] = 6; // must be <= 9 for lookahead assumptions t = table; t = inftree.inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), blens, bl, bd, tl, td, hufts, z); if (t != Z_OK) { if (t == Z_DATA_ERROR) { blens = null; mode = BAD; } r = t; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } codes.init(bl[0], bd[0], hufts, tl[0], hufts, td[0], z); } mode = CODES; case CODES: bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; if ((r = codes.proc(this, z, r)) != Z_STREAM_END) { return inflate_flush(z, r); } r = Z_OK; codes.free(z); p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; q = write; m = (int)(q < read ? read - q - 1 : end - q); if (last == 0) { mode = TYPE; break; } mode = DRY; case DRY: write = q; r = inflate_flush(z, r); q = write; m = (int)(q < read ? read - q - 1 : end - q); if (read != write) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } mode = DONE; case DONE: r = Z_STREAM_END; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); case BAD: r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); default: r = Z_STREAM_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return inflate_flush(z, r); } } } void free(ZStream z) { reset(z, null); window = null; hufts = null; //ZFREE(z, s); } void set_dictionary(byte[] d, int start, int n) { System.arraycopy(d, start, window, 0, n); read = write = n; } // Returns true if inflate is currently at the end of a block generated // by Z_SYNC_FLUSH or Z_FULL_FLUSH. int sync_point() { return mode == LENS ? 1 : 0; } // copy as much as possible from the sliding window to the output area int inflate_flush(ZStream z, int r) { int n; int p; int q; // local copies of source and destination pointers p = z.next_out_index; q = read; // compute number of bytes to copy as far as end of window n = (int)((q <= write ? write : end) - q); if (n > z.avail_out) n = z.avail_out; if (n != 0 && r == Z_BUF_ERROR) r = Z_OK; // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) z.adler = check = z._adler.adler32(check, window, q, n); // copy as far as end of window System.arraycopy(window, q, z.next_out, p, n); p += n; q += n; // see if more to copy at beginning of window if (q == end) { // wrap pointers q = 0; if (write == end) write = 0; // compute bytes to copy n = write - q; if (n > z.avail_out) n = z.avail_out; if (n != 0 && r == Z_BUF_ERROR) r = Z_OK; // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) z.adler = check = z._adler.adler32(check, window, q, n); // copy System.arraycopy(window, q, z.next_out, p, n); p += n; q += n; } // update pointers z.next_out_index = p; read = q; // done return r; } }