Mercurial > dnsbl
view src/dnsbl.cpp @ 177:a4d313c2460b
start embedded dcc filtering
author | carl |
---|---|
date | Sun, 30 Sep 2007 10:27:14 -0700 |
parents | da0c41b9f672 |
children | d6531c702be3 |
line wrap: on
line source
/* Copyright (c) 2007 Carl Byington - 510 Software Group, released under the GPL version 3 or any later version at your choice available at http://www.gnu.org/licenses/gpl-3.0.txt Based on a sample milter Copyright (c) 2000-2003 Sendmail, Inc. and its suppliers. Inspired by the DCC by Rhyolite Software -b port The port used to talk to the dcc interface daemon -r port The port used to talk to our internal dns resolver processes -p port The port through which the MTA will connect to this milter. -t sec The timeout value. -c Check the config, and print a copy to stdout. Don't start the milter or do anything with the socket. -s Stress test by loading and deleting the current config in a loop. -d level set the debug level -e f|t Print the results of looking up from address f and to address t in the current config */ // from sendmail sample #include <sys/types.h> #include <sys/stat.h> #include <errno.h> #include <sysexits.h> #include <unistd.h> // needed for socket io #include <sys/ioctl.h> #include <net/if.h> #include <arpa/inet.h> #include <netinet/in.h> #include <netinet/tcp.h> #include <netdb.h> #include <sys/socket.h> #include <sys/un.h> // needed for thread #include <pthread.h> // needed for std c++ collections #include <set> #include <map> #include <list> // for the dns resolver #include <netinet/in.h> #include <arpa/nameser.h> #include <resolv.h> // misc stuff needed here #include <ctype.h> #include <syslog.h> #include <pwd.h> #include <sys/wait.h> /* header for waitpid() and various macros */ #include <signal.h> /* header for signal functions */ #include "includes.h" static char* dnsbl_version="$Id$"; extern "C" { #include <libmilter/mfapi.h> sfsistat mlfi_connect(SMFICTX *ctx, char *hostname, _SOCK_ADDR *hostaddr); sfsistat mlfi_helo(SMFICTX * ctx, char *helohost); sfsistat mlfi_envfrom(SMFICTX *ctx, char **argv); sfsistat mlfi_envrcpt(SMFICTX *ctx, char **argv); sfsistat mlfi_header(SMFICTX* ctx, char* headerf, char* headerv); sfsistat mlfi_body(SMFICTX *ctx, u_char *data, size_t len); sfsistat mlfi_eom(SMFICTX *ctx); sfsistat mlfi_abort(SMFICTX *ctx); sfsistat mlfi_close(SMFICTX *ctx); void sig_chld(int signo); } int debug_syslog = 0; bool syslog_opened = false; bool use_syslog = true; // false to printf bool loader_run = true; // used to stop the config loader thread CONFIG *config = NULL; // protected by the config_mutex int generation = 0; // protected by the config_mutex const int maxlen = 1000; // used for snprintf buffers pthread_mutex_t config_mutex; pthread_mutex_t syslog_mutex; pthread_mutex_t resolve_mutex; pthread_mutex_t fd_pool_mutex; pthread_mutex_t rate_mutex; std::set<int> fd_pool; int NULL_SOCKET = -1; const time_t ERROR_SOCKET_TIME = 60; // number of seconds between attempts to open a socket to the dns resolver process char *resolver_port = NULL; // unix domain socket to talk to the dns resolver process int resolver_socket = NULL_SOCKET; // socket used to listen for resolver requests char *dccifd_port = NULL; // unix domain socket to talk to the dcc interface daemon time_t last_error_time; int resolver_sock_count = 0; // protected with fd_pool_mutex int resolver_pool_size = 0; // protected with fd_pool_mutex rcpt_rates rcpt_counts; // protected with rate_mutex struct ns_map { // all the strings are owned by the keys/values in the ns_host string map string_map ns_host; // nameserver name -> host name that uses this name server ns_mapper ns_ip; // nameserver name -> ip address of the name server ~ns_map(); void add(char *name, char *refer); }; ns_map::~ns_map() { for (string_map::iterator i=ns_host.begin(); i!=ns_host.end(); i++) { char *x = (*i).first; char *y = (*i).second; free(x); free(y); } ns_ip.clear(); ns_host.clear(); } void ns_map::add(char *name, char *refer) { string_map::iterator i = ns_host.find(name); if (i != ns_host.end()) return; char *x = strdup(name); char *y = strdup(refer); ns_ip[x] = 0; ns_host[x] = y; } // packed structure to allow a single socket write to dump the // length and the following answer. The packing attribute is gcc specific. struct glommer { int length; #ifdef NS_PACKETSZ u_char answer[NS_PACKETSZ*4]; // with a resolver, we return resolver answers #else int answer; // without a resolver, we return a single ip4 address, 0 == no answer #endif } __attribute__ ((packed)); //////////////////////////////////////////////// // helper to manipulate recipient counts // int incr_rcpt_count(char *user); int incr_rcpt_count(char *user) { pthread_mutex_lock(&rate_mutex); rcpt_rates::iterator i = rcpt_counts.find(user); int c = 1; if (i == rcpt_counts.end()) { user = strdup(user); rcpt_counts[user] = c; } else { c = ++((*i).second); } pthread_mutex_unlock(&rate_mutex); return c; } //////////////////////////////////////////////// // helper to discard the strings held by a context_map // void discard(context_map &cm); void discard(context_map &cm) { for (context_map::iterator i=cm.begin(); i!=cm.end(); i++) { char *x = (*i).first; free(x); } cm.clear(); } //////////////////////////////////////////////// // helper to register a string in a context_map // void register_string(context_map &cm, char *name, CONTEXT *con); void register_string(context_map &cm, char *name, CONTEXT *con) { context_map::iterator i = cm.find(name); if (i != cm.end()) return; char *x = strdup(name); cm[x] = con; } //////////////////////////////////////////////// // disconnect the fd from the dns resolver process // void my_disconnect(int sock, bool decrement = true); void my_disconnect(int sock, bool decrement) { if (sock != NULL_SOCKET) { if (decrement) { pthread_mutex_lock(&fd_pool_mutex); resolver_sock_count--; pthread_mutex_unlock(&fd_pool_mutex); } shutdown(sock, SHUT_RDWR); close(sock); } } //////////////////////////////////////////////// // return fd connected to the dns resolver process // int my_connect(); int my_connect() { // if we have had recent errors, don't even try to open the socket if ((time(NULL) - last_error_time) < ERROR_SOCKET_TIME) return NULL_SOCKET; // nothing recent, maybe this time it will work int sock = NULL_SOCKET; sockaddr_un server; memset(&server, '\0', sizeof(server)); server.sun_family = AF_UNIX; strncpy(server.sun_path, resolver_port, sizeof(server.sun_path)-1); sock = socket(AF_UNIX, SOCK_STREAM, 0); if (sock != NULL_SOCKET) { bool rc = (connect(sock, (sockaddr *)&server, sizeof(server)) == 0); if (!rc) { my_disconnect(sock, false); sock = NULL_SOCKET; last_error_time = time(NULL); } } else last_error_time = time(NULL); if (sock != NULL_SOCKET) { pthread_mutex_lock(&fd_pool_mutex); resolver_sock_count++; pthread_mutex_unlock(&fd_pool_mutex); } return sock; } mlfiPriv::mlfiPriv() { pthread_mutex_lock(&config_mutex); pc = config; pc->reference_count++; pthread_mutex_unlock(&config_mutex); get_fd(); ip = 0; helo = NULL; mailaddr = NULL; queueid = NULL; authenticated = NULL; client_name = NULL; have_whites = false; only_whites = true; want_spamassassin = false; memory = NULL; scanner = NULL; assassin = NULL; content_suffix = NULL; content_message = NULL; uribl_suffix = NULL; uribl_message = NULL; content_host_ignore = NULL; } mlfiPriv::~mlfiPriv() { return_fd(); pthread_mutex_lock(&config_mutex); pc->reference_count--; bool last = (!pc->reference_count) && (pc != config); pthread_mutex_unlock(&config_mutex); if (last) delete pc; // free this config, since we were the last reference to it if (helo) free(helo); reset(true); } void mlfiPriv::reset(bool final) { if (mailaddr) free(mailaddr); if (queueid) free(queueid); if (authenticated) free(authenticated); if (client_name) free(client_name); discard(env_to); if (memory) delete memory; if (scanner) delete scanner; if (assassin) delete assassin; if (!final) { mailaddr = NULL; queueid = NULL; authenticated = NULL; client_name = NULL; have_whites = false; only_whites = true; want_spamassassin = false; memory = NULL; scanner = NULL; assassin = NULL; content_suffix = NULL; content_message = NULL; uribl_suffix = NULL; uribl_message = NULL; content_host_ignore = NULL; } } void mlfiPriv::get_fd() { err = true; fd = NULL_SOCKET; int result = pthread_mutex_lock(&fd_pool_mutex); if (!result) { std::set<int>::iterator i; i = fd_pool.begin(); if (i != fd_pool.end()) { // have at least one fd in the pool err = false; fd = *i; fd_pool.erase(fd); resolver_pool_size--; pthread_mutex_unlock(&fd_pool_mutex); } else { // pool is empty, get a new fd pthread_mutex_unlock(&fd_pool_mutex); fd = my_connect(); err = (fd == NULL_SOCKET); } } else { // cannot lock the pool, just get a new fd fd = my_connect(); err = (fd == NULL_SOCKET); } } void mlfiPriv::return_fd() { if (err) { // this fd got a socket error, so close it, rather than returning it to the pool my_disconnect(fd); } else { int result = pthread_mutex_lock(&fd_pool_mutex); if (!result) { if ((resolver_sock_count > resolver_pool_size*5) || (resolver_pool_size < 5)) { // return the fd to the pool fd_pool.insert(fd); resolver_pool_size++; pthread_mutex_unlock(&fd_pool_mutex); } else { // more than 20% of the open resolver sockets are in the pool, and the // pool as at least 5 sockets. that is enough, so just close this one. pthread_mutex_unlock(&fd_pool_mutex); my_disconnect(fd); } } else { // could not lock the pool, so just close the fd my_disconnect(fd); } } } size_t mlfiPriv::my_write(const char *buf, size_t len) { if (err) return 0; size_t rs = 0; while (len) { size_t ws = write(fd, buf, len); if (ws > 0) { rs += ws; len -= ws; buf += ws; } else { // peer closed the socket! rs = 0; err = true; break; } } return rs; } size_t mlfiPriv::my_read(char *buf, size_t len) { if (err) return 0; size_t rs = 0; while (len) { size_t ws = read(fd, buf, len); if (ws > 0) { rs += ws; len -= ws; buf += ws; } else { // peer closed the socket! rs = 0; err = true; break; } } return rs; } void mlfiPriv::need_content_filter(char *rcpt, CONTEXT &con) { register_string(env_to, rcpt, &con); if (!memory) { // first recipient that needs content filtering sets all // the content filtering parameters memory = new recorder(this, con.get_html_tags(), con.get_content_tlds(), con.get_content_cctlds()); scanner = new url_scanner(memory); content_suffix = con.get_content_suffix(); content_message = con.get_content_message(); uribl_suffix = con.get_uribl_suffix(); uribl_message = con.get_uribl_message(); content_host_ignore = &con.get_content_host_ignore(); } } #define MLFIPRIV ((struct mlfiPriv *) smfi_getpriv(ctx)) //////////////////////////////////////////////// // syslog a message // void my_syslog(mlfiPriv *priv, char *text) { char buf[maxlen]; if (priv) { snprintf(buf, sizeof(buf), "%s: %s", priv->queueid, text); text = buf; } if (use_syslog) { pthread_mutex_lock(&syslog_mutex); if (!syslog_opened) { openlog("dnsbl", LOG_PID, LOG_MAIL); syslog_opened = true; } syslog(LOG_NOTICE, "%s", text); pthread_mutex_unlock(&syslog_mutex); } else { printf("%s \n", text); } } void my_syslog(mlfiPriv *priv, string text) { if (debug_syslog > 3) { char buf[maxlen]; strncpy(buf, text.c_str(), sizeof(buf)); buf[maxlen-1] = '\0'; // ensure null termination my_syslog(priv, buf); } } void my_syslog(char *text) { my_syslog(NULL, text); } //////////////////////////////////////////////// // read a resolver request from the socket, process it, and // write the result back to the socket. void process_resolver_requests(int socket); void process_resolver_requests(int socket) { #ifdef NS_MAXDNAME char question[NS_MAXDNAME]; #else char question[1000]; #endif glommer glom; int maxq = sizeof(question); while (true) { // read a question int rs = 0; while (rs < maxq) { int ns = read(socket, question+rs, maxq-rs); if (ns > 0) { rs += ns; if (question[rs-1] == '\0') { // last byte read was the null terminator, we are done break; } } else { // peer closed the socket #ifdef RESOLVER_DEBUG my_syslog("process_resolver_requests() peer closed socket while reading question"); #endif shutdown(socket, SHUT_RDWR); close(socket); return; } } question[rs-1] = '\0'; // ensure null termination // find the answer #ifdef NS_PACKETSZ #ifdef RESOLVER_DEBUG char text[1000]; snprintf(text, sizeof(text), "process_resolver_requests() has a question %s", question); my_syslog(text); #endif if ((_res.options & RES_INIT) == 0) res_init(); _res.retry = 2; _res.retrans = RES_TIMEOUT; glom.length = res_search(question, ns_c_in, ns_t_a, glom.answer, sizeof(glom.answer)); if (glom.length < 0) glom.length = 0; // represent all errors as zero length answers #else glom.length = sizeof(glom.answer); glom.answer = 0; struct hostent *host = gethostbyname(question); if (host && (host->h_addrtype == AF_INET)) { memcpy(&glom.answer, host->h_addr, sizeof(glom.answer)); } #endif // write the answer char *buf = (char *)&glom; int len = glom.length + sizeof(glom.length); #ifdef RESOLVER_DEBUG snprintf(text, sizeof(text), "process_resolver_requests() writing answer length %d for total %d", glom.length, len); my_syslog(text); #endif int ws = 0; while (len > ws) { int ns = write(socket, buf+ws, len-ws); if (ns > 0) { ws += ns; } else { // peer closed the socket! #ifdef RESOLVER_DEBUG my_syslog("process_resolver_requests() peer closed socket while writing answer"); #endif shutdown(socket, SHUT_RDWR); close(socket); return; } } } } //////////////////////////////////////////////// // ask a dns question and get an A record answer - we don't try // very hard, just using the default resolver retry settings. // If we cannot get an answer, we just accept the mail. // // int dns_interface(mlfiPriv &priv, char *question, bool maybe_ip, ns_map *nameservers); int dns_interface(mlfiPriv &priv, char *question, bool maybe_ip, ns_map *nameservers) { // this part can be done without locking the resolver mutex. Each // milter thread is talking over its own socket to a separate resolver // process, which does the actual dns resolution. if (priv.err) return 0; // cannot ask more questions on this socket. if (maybe_ip) { // might be a bare ip address, try this first to avoid dns lookups that may not be needed in_addr ip; if (inet_aton(question, &ip)) { return (int)ip.s_addr; } } int n = strlen(question); if (question[n-1] == '.') { priv.my_write(question, n+1); // write the question including the null terminator } else { priv.my_write(question, n); // write the question priv.my_write(".", 2); // and the fully qualified . terminator and null string terminator } glommer glom; char *buf = (char *)&glom; priv.my_read(buf, sizeof(glom.length)); buf += sizeof(glom.length); #ifdef RESOLVER_DEBUG char text[1000]; snprintf(text, sizeof(text), "dns_interface() wrote question %s and has answer length %d", question, glom.length); my_syslog(text); #endif if ((glom.length < 0) || (glom.length > sizeof(glom.answer))) { priv.err = true; return 0; // cannot process overlarge answers } priv.my_read(buf, glom.length); #ifdef NS_PACKETSZ // now we need to lock the resolver mutex to keep the milter threads from // stepping on each other while parsing the dns answer. int ret_address = 0; pthread_mutex_lock(&resolve_mutex); if (glom.length > 0) { // parse the answer ns_msg handle; ns_rr rr; if (ns_initparse(glom.answer, glom.length, &handle) == 0) { // look for ns names if (nameservers) { ns_map &ns = *nameservers; int rrnum = 0; while (ns_parserr(&handle, ns_s_ns, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == ns_t_ns) { char nam[NS_MAXDNAME+1]; char *n = nam; const u_char *p = ns_rr_rdata(rr); while (((n-nam) < NS_MAXDNAME) && ((p-glom.answer) < glom.length) && *p) { size_t s = *(p++); if (s > 191) { // compression pointer s = (s-192)*256 + *(p++); if (s >= glom.length) break; // pointer outside bounds of answer p = glom.answer + s; s = *(p++); } if (s > 0) { if ((n-nam) >= (NS_MAXDNAME-s)) break; // destination would overflow name buffer if ((p-glom.answer) >= (glom.length-s)) break; // source outside bounds of answer memcpy(n, p, s); n += s; p += s; *(n++) = '.'; } } if (n-nam) n--; // remove trailing . *n = '\0'; // null terminate it ns.add(nam, question); // ns host to lookup later } } rrnum = 0; while (ns_parserr(&handle, ns_s_ar, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == ns_t_a) { char* nam = (char*)ns_rr_name(rr); ns_mapper::iterator i = ns.ns_ip.find(nam); if (i != ns.ns_ip.end()) { // we want this ip address int address; memcpy(&address, ns_rr_rdata(rr), sizeof(address)); ns.ns_ip[nam] = address; } } } } int rrnum = 0; while (ns_parserr(&handle, ns_s_an, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == ns_t_a) { int address; memcpy(&address, ns_rr_rdata(rr), sizeof(address)); ret_address = address; } } } } pthread_mutex_unlock(&resolve_mutex); return ret_address; #else return glom.answer; #endif } //////////////////////////////////////////////// // check a single dnsbl // bool check_single(mlfiPriv &priv, int ip, char *suffix); bool check_single(mlfiPriv &priv, int ip, char *suffix) { // make a dns question const u_char *src = (const u_char *)&ip; if (src[0] == 127) return false; // don't do dns lookups on localhost if (src[0] == 10) return false; // don't do dns lookups on rfc1918 space if ((src[0] == 192) && (src[1] == 168)) return false; if ((src[0] == 172) && (16 <= src[1]) && (src[1] <= 31)) return false; #ifdef NS_MAXDNAME char question[NS_MAXDNAME]; #else char question[1000]; #endif snprintf(question, sizeof(question), "%u.%u.%u.%u.%s.", src[3], src[2], src[1], src[0], suffix); // ask the question, if we get an A record it implies a blacklisted ip address return dns_interface(priv, question, false, NULL); } //////////////////////////////////////////////// // check a single dnsbl // bool check_single(mlfiPriv &priv, int ip, DNSBL &bl); bool check_single(mlfiPriv &priv, int ip, DNSBL &bl) { return check_single(priv, ip, bl.suffix); } //////////////////////////////////////////////// // check the dnsbls specified for this recipient // bool check_dnsbl(mlfiPriv &priv, dnsblp_list &dnsbll, DNSBLP &rejectlist); bool check_dnsbl(mlfiPriv &priv, dnsblp_list &dnsbll, DNSBLP &rejectlist) { for (dnsblp_list::iterator i=dnsbll.begin(); i!=dnsbll.end(); i++) { DNSBLP dp = *i; // non null by construction bool st; map<DNSBLP, bool>::iterator f = priv.checked.find(dp); if (f == priv.checked.end()) { // have not checked this list yet st = check_single(priv, priv.ip, *dp); rejectlist = dp; priv.checked[dp] = st; } else { st = (*f).second; rejectlist = (*f).first; } if (st) return st; } return false; } //////////////////////////////////////////////// // lookup the domain name part of a hostname on the uribl // // if we find part of the hostname on the uribl, return // true and point found to the part of the hostname that we found. // otherwise, return false and preserve the value of found. // bool uriblookup(mlfiPriv &priv ,char *hostname, char *top, char *&found) ; bool uriblookup(mlfiPriv &priv, char *hostname, char *top, char *&found) { // top is pointer to '.' char at end of base domain, or null for ip address form // so for hostname of www.fred.mydomain.co.uk // top points to-----------------------^ // and we end up looking at only mydomain.co.uk, ignoring the www.fred stuff char buf[maxlen]; if (top) { // add one more component *top = '\0'; char *x = strrchr(hostname, '.'); if (x) hostname = x+1; *top = '.'; } snprintf(buf, sizeof(buf), "%s.%s.", hostname, priv.uribl_suffix); if (dns_interface(priv, buf, false, NULL)) { if (debug_syslog > 2) { char tmp[maxlen]; snprintf(tmp, sizeof(tmp), "found %s on %s", hostname, priv.uribl_suffix); my_syslog(tmp); } found = hostname; return true; } return false; } //////////////////////////////////////////////// // uribl checker // ------------- // hostname MUST not have a trailing dot // If tld, two level lookup. // Else, look up three level domain. // // if we find part of the hostname on the uribl, return // true and point found to the part of the hostname that we found. // otherwise, return false and preserve the value of found. // bool check_uribl(mlfiPriv &priv, char *hostname, char *&found) ; bool check_uribl(mlfiPriv &priv, char *hostname, char *&found) { in_addr ip; if (inet_aton(hostname, &ip)) { const u_char *src = (const u_char *)&ip.s_addr; if (src[0] == 127) return false; // don't do dns lookups on localhost if (src[0] == 10) return false; // don't do dns lookups on rfc1918 space if ((src[0] == 192) && (src[1] == 168)) return false; if ((src[0] == 172) && (16 <= src[1]) && (src[1] <= 31)) return false; static char adr[sizeof "255.255.255.255"]; snprintf(adr, sizeof(adr), "%u.%u.%u.%u", src[3], src[2], src[1], src[0]); return (uriblookup(priv, adr, NULL, found)); } char *top, *top2, *top3; top = strrchr(hostname, '.'); if (top) { *top = '\0'; top2 = strrchr(hostname, '.'); *top = '.'; if (top2) { string_set::iterator i = priv.memory->get_cctlds()->find(top2+1); string_set::iterator x = priv.memory->get_cctlds()->end(); // if we have a 2-level-cctld, just look at top three levels of the name if (i != x) return uriblookup(priv, hostname, top2, found); *top2 = '\0'; top3 = strrchr(hostname, '.'); *top2 = '.'; // if we have more than 3 levels in the name, look at the top three levels of the name if (top3 && uriblookup(priv, hostname, top2, found)) return true; // if that was not found, fall thru to looking at the top two levels } // look at the top two levels of the name return uriblookup(priv, hostname, top, found); } return false; } //////////////////////////////////////////////// // check the hosts from the body against the content filter and uribl dnsbls // // bool check_hosts(mlfiPriv &priv, bool random, int limit, char *&msg, char *&host, int &ip, char *&found); bool check_hosts(mlfiPriv &priv, bool random, int limit, char *&msg, char *&host, int &ip, char *&found) { found = NULL; // normally ip address style if (!priv.content_suffix && !priv.uribl_suffix) return false; // nothing to check CONFIG &dc = *priv.pc; string_set &hosts = priv.memory->get_hosts(); string_set &ignore = *priv.content_host_ignore; int count = 0; int cnt = hosts.size(); // number of hosts we could look at int_set ips; ns_map nameservers; for (string_set::iterator i=hosts.begin(); i!=hosts.end(); i++) { host = *i; // a reference into hosts, which will live until this smtp transaction is closed // don't bother looking up hosts on the ignore list string_set::iterator j = ignore.find(host); if (j != ignore.end()) continue; // try to only look at limit/cnt fraction of the available cnt host names in random mode if ((cnt > limit) && (limit > 0) && random) { int r = rand() % cnt; if (r >= limit) { if (debug_syslog > 2) { char buf[maxlen]; snprintf(buf, sizeof(buf), "host %s skipped", host); my_syslog(&priv, buf); } continue; } } count++; ip = dns_interface(priv, host, true, &nameservers); if (debug_syslog > 2) { char buf[maxlen]; if (ip) { char adr[sizeof "255.255.255.255"]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&ip, adr, sizeof(adr)); snprintf(buf, sizeof(buf), "host %s found at %s", host, adr); } else { snprintf(buf, sizeof(buf), "host %s not found", host); } my_syslog(&priv, buf); } if (ip) { int_set::iterator i = ips.find(ip); if (i == ips.end()) { // we haven't looked this up yet ips.insert(ip); // check dnsbl style list if (priv.content_suffix && check_single(priv, ip, priv.content_suffix)) { msg = priv.content_message; return true; } // Check uribl & surbl style list if (priv.uribl_suffix && check_uribl(priv, host, found)) { msg = priv.uribl_message; return true; } } } } limit *= 4; // allow average of 3 ns per host name for (ns_mapper::iterator i=nameservers.ns_ip.begin(); i!=nameservers.ns_ip.end(); i++) { count++; if ((count > limit) && (limit > 0)) return false; // too many name servers to check them all host = (*i).first; // a transient reference that needs to be replaced before we return it ip = (*i).second; if (!ip) ip = dns_interface(priv, host, false, NULL); if (debug_syslog > 2) { char buf[maxlen]; if (ip) { char adr[sizeof "255.255.255.255"]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&ip, adr, sizeof(adr)); snprintf(buf, sizeof(buf), "ns %s found at %s", host, adr); } else { snprintf(buf, sizeof(buf), "ns %s not found", host); } my_syslog(&priv, buf); } if (ip) { int_set::iterator i = ips.find(ip); if (i == ips.end()) { ips.insert(ip); if (check_single(priv, ip, priv.content_suffix)) { msg = priv.content_message; string_map::iterator j = nameservers.ns_host.find(host); if (j != nameservers.ns_host.end()) { char *refer = (*j).second; char buf[maxlen]; snprintf(buf, sizeof(buf), "%s with nameserver %s", refer, host); host = register_string(hosts, buf); // put a copy into hosts, and return that reference } else { host = register_string(hosts, host); // put a copy into hosts, and return that reference } return true; } } } } return false; } //////////////////////////////////////////////// // // this email address is passed in from sendmail, and will normally be // enclosed in <>. I think older versions of sendmail supplied the <> // wrapper if the mail client did not, but the current version does not do // that. So the <> wrapper is now optional. It may have mixed case, just // as the mail client sent it. We dup the string and convert the duplicate // to lower case. // char *to_lower_string(char *email); char *to_lower_string(char *email) { int n = strlen(email); if (*email == '<') { // assume it also ends with > n -= 2; if (n < 1) return strdup(email); // return "<>" email++; } char *key = strdup(email); key[n] = '\0'; for (int i=0; i<n; i++) key[i] = tolower(key[i]); return key; } //////////////////////////////////////////////// // start of sendmail milter interfaces // sfsistat mlfi_connect(SMFICTX *ctx, char *hostname, _SOCK_ADDR *hostaddr) { // allocate some private memory mlfiPriv *priv = new mlfiPriv; if (hostaddr->sa_family == AF_INET) { priv->ip = ((struct sockaddr_in *)hostaddr)->sin_addr.s_addr; } // save the private data smfi_setpriv(ctx, (void*)priv); // continue processing return SMFIS_CONTINUE; } sfsistat mlfi_helo(SMFICTX * ctx, char *helohost) { mlfiPriv &priv = *MLFIPRIV; priv.helo = strdup(helohost); return SMFIS_CONTINUE; } sfsistat mlfi_envfrom(SMFICTX *ctx, char **from) { mlfiPriv &priv = *MLFIPRIV; priv.mailaddr = to_lower_string(from[0]); priv.queueid = strdup(smfi_getsymval(ctx, "i")); priv.authenticated = smfi_getsymval(ctx, "{auth_authen}"); priv.client_name = smfi_getsymval(ctx, "_"); if (priv.authenticated) priv.authenticated = strdup(priv.authenticated); if (priv.client_name) priv.client_name = strdup(priv.client_name); if (spamc != spamc_empty) { priv.assassin = new SpamAssassin(&priv, priv.ip, priv.helo, priv.mailaddr, priv.queueid); } return SMFIS_CONTINUE; } sfsistat mlfi_envrcpt(SMFICTX *ctx, char **rcpt) { DNSBLP rejectlist = NULL; // list that caused the reject mlfiPriv &priv = *MLFIPRIV; CONFIG &dc = *priv.pc; char *rcptaddr = rcpt[0]; char *loto = to_lower_string(rcptaddr); // some version of sendmail allowed rcpt to:<> and passed it thru to the milters if (strcmp(loto, "<>") == 0) { smfi_setreply(ctx, "550", "5.7.1", "bogus recipient"); return SMFIS_REJECT; } if (priv.assassin) priv.assassin->mlfi_envrcpt(ctx, loto); // priv.mailaddr sending original message to loto CONTEXT &con = *(dc.find_context(loto)->find_context(priv.mailaddr)); VERIFYP ver = con.find_verify(loto); char *fromvalue = con.find_from(priv.mailaddr, true); // loto sending a reply back to priv.mailaddr CONTEXT &con2 = *(dc.find_context(priv.mailaddr)->find_context(loto)); char *replyvalue = con2.find_from(loto); if (debug_syslog > 1) { char buf[maxlen]; char msg[maxlen]; snprintf(msg, sizeof(msg), "from <%s> to <%s> using context %s state %s reply state %s", priv.mailaddr, loto, con.get_full_name(buf,maxlen), fromvalue, replyvalue); my_syslog(&priv, msg); } free(loto); status st; if (replyvalue == token_black) { smfi_setreply(ctx, "550", "5.7.1", "recipient can not reply due to blacklisting"); return SMFIS_REJECT; } if (priv.authenticated) { int c = incr_rcpt_count(priv.authenticated); int l = dc.default_context->find_rate(priv.authenticated); if (debug_syslog > 1) { char buf[maxlen]; char msg[maxlen]; snprintf(msg, sizeof(msg), "authenticated id %s (%d recipients, %d limit)", priv.authenticated, c, l); my_syslog(&priv, msg); } if (c > l) { smfi_setreply(ctx, "550", "5.7.1", "recipient rate limit exceeded"); return SMFIS_REJECT; } st = white; } else if (fromvalue == token_black) { st = black; } else if (fromvalue == token_white) { st = white; } else { // check the dns based lists st = (check_dnsbl(priv, con.get_dnsbl_list(), rejectlist)) ? reject : oksofar; } if (st == reject) { // reject the recipient based on some dnsbl char adr[sizeof "255.255.255.255"]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&priv.ip, adr, sizeof(adr)); char buf[maxlen]; snprintf(buf, sizeof(buf), rejectlist->message, adr, adr); smfi_setreply(ctx, "550", "5.7.1", buf); return SMFIS_REJECT; } if (st == oksofar) { char *msg = con.generic_match(priv.client_name); if (msg) { // reject the recipient based on generic reverse dns char buf[maxlen]; snprintf(buf, sizeof(buf), msg, priv.client_name); smfi_setreply(ctx, "550", "5.7.1", buf); return SMFIS_REJECT; } } if (st == black) { // reject the recipient based on blacklisting either from or to smfi_setreply(ctx, "550", "5.7.1", "no such user"); return SMFIS_REJECT; } if (ver && (st != white)) { // try to verify this from/to pair of addresses since it is not explicitly whitelisted char *loto = to_lower_string(rcptaddr); bool rc = ver->ok(priv.mailaddr, loto); free(loto); if (!rc) { smfi_setreply(ctx, "550", "5.7.1", "no such user"); return SMFIS_REJECT; } } // we will accept the recipient, but add an auto-whitelist entry // if needed to ensure we can accept replies loto = to_lower_string(rcptaddr); WHITELISTERP w = con2.find_autowhite(loto, priv.mailaddr); if (w) { if (debug_syslog > 1) { char buf[maxlen]; char msg[maxlen]; snprintf(msg, sizeof(msg), "whitelist reply from <%s> in context %s", loto, con2.get_full_name(buf,maxlen)); my_syslog(&priv, msg); } w->sent(loto); // don't free it, the whitelister takes ownership of the string } else { free(loto); } // accept the recipient if (!con.get_content_filtering()) st = white; if (st == oksofar) { // but remember the non-whites priv.need_content_filter(rcptaddr, con); priv.only_whites = false; priv.want_spamassassin |= (priv.assassin) && // have spam assassin available and (con.get_spamassassin_limit() != 0); // want to use it with a non-zero score } if (st == white) { priv.have_whites = true; } return SMFIS_CONTINUE; } sfsistat mlfi_header(SMFICTX* ctx, char* headerf, char* headerv) { mlfiPriv &priv = *MLFIPRIV; if (priv.authenticated) return SMFIS_CONTINUE; if (priv.only_whites) return SMFIS_CONTINUE; if (priv.want_spamassassin) priv.assassin->mlfi_header(headerf, headerv); return SMFIS_CONTINUE; } sfsistat mlfi_eoh(SMFICTX* ctx) { mlfiPriv &priv = *MLFIPRIV; if (priv.authenticated) return SMFIS_CONTINUE; if (priv.only_whites) return SMFIS_CONTINUE; if (priv.want_spamassassin) priv.assassin->mlfi_eoh(); return SMFIS_CONTINUE; } sfsistat mlfi_body(SMFICTX *ctx, u_char *data, size_t len) { mlfiPriv &priv = *MLFIPRIV; if (priv.authenticated) return SMFIS_CONTINUE; if (priv.only_whites) return SMFIS_CONTINUE; if (priv.want_spamassassin) priv.assassin->mlfi_body(data, len); priv.scanner->scan(data, len); return SMFIS_CONTINUE; } sfsistat mlfi_eom(SMFICTX *ctx) { sfsistat rc; mlfiPriv &priv = *MLFIPRIV; CONFIG &dc = *priv.pc; char *host = NULL; int ip; status st; // process end of message if (priv.authenticated || priv.only_whites) rc = SMFIS_CONTINUE; else { int score = (priv.want_spamassassin) ? priv.assassin->mlfi_eom() : 0; // assert env_to not empty char buf[maxlen]; string msg; string_set alive; bool random = false; int limit = 0; for (context_map::iterator i=priv.env_to.begin(); i!=priv.env_to.end(); i++) { char *rcpt = (*i).first; CONTEXT &con = *((*i).second); if (!con.acceptable_content(*priv.memory, score, msg)) { // bad html tags or excessive hosts or high spam assassin score smfi_delrcpt(ctx, rcpt); } else { alive.insert(rcpt); random |= con.get_host_random(); limit = max(limit, con.get_host_limit()); } } bool rejecting = alive.empty(); // if alive is empty, we must have set msg above in acceptable_content() if (!rejecting) { char *fmt, *found; if (check_hosts(priv, random, limit, fmt, host, ip, found)) { if (found) { // uribl style snprintf(buf, sizeof(buf), fmt, host, found); } else { // dnsbl style char adr[sizeof "255.255.255.255"]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&ip, adr, sizeof(adr)); snprintf(buf, sizeof(buf), fmt, host, adr); } msg = string(buf); rejecting = true; } } if (!rejecting) { rc = SMFIS_CONTINUE; } else if (!priv.have_whites) { // can reject the entire message snprintf(buf, sizeof(buf), "%s", msg.c_str()); smfi_setreply(ctx, "550", "5.7.1", buf); rc = SMFIS_REJECT; } else { // need to accept it but remove the recipients that don't want it for (string_set::iterator i=alive.begin(); i!=alive.end(); i++) { char *rcpt = *i; smfi_delrcpt(ctx, rcpt); } rc = SMFIS_CONTINUE; } } // reset for a new message on the same connection mlfi_abort(ctx); return rc; } sfsistat mlfi_abort(SMFICTX *ctx) { mlfiPriv &priv = *MLFIPRIV; priv.reset(); return SMFIS_CONTINUE; } sfsistat mlfi_close(SMFICTX *ctx) { mlfiPriv *priv = MLFIPRIV; if (!priv) return SMFIS_CONTINUE; delete priv; smfi_setpriv(ctx, NULL); return SMFIS_CONTINUE; } struct smfiDesc smfilter = { "DNSBL", // filter name SMFI_VERSION, // version code -- do not change SMFIF_DELRCPT, // flags mlfi_connect, // connection info filter mlfi_helo, // SMTP HELO command filter mlfi_envfrom, // envelope sender filter mlfi_envrcpt, // envelope recipient filter mlfi_header, // header filter mlfi_eoh, // end of header mlfi_body, // body block filter mlfi_eom, // end of message mlfi_abort, // message aborted mlfi_close, // connection cleanup }; //////////////////////////////////////////////// // reload the config // CONFIG* new_conf(); CONFIG* new_conf() { CONFIG *newc = new CONFIG; pthread_mutex_lock(&config_mutex); newc->generation = generation++; pthread_mutex_unlock(&config_mutex); if (debug_syslog) { char buf[maxlen]; snprintf(buf, sizeof(buf), "loading configuration generation %d", newc->generation); my_syslog(buf); } if (load_conf(*newc, "dnsbl.conf")) { newc->load_time = time(NULL); return newc; } delete newc; return NULL; } //////////////////////////////////////////////// // thread to watch the old config files for changes // and reload when needed. // we also clear the SMTP AUTH recipient counts hourly // extern "C" {void* config_loader(void *arg);} void* config_loader(void *arg) { int loop = 0; while (loader_run) { sleep(180); // look for modifications every 3 minutes if (!loader_run) break; loop++; if (loop == 20) { // three minutes thru each loop, 20 loops per hour // clear the recipient counts pthread_mutex_lock(&rate_mutex); for (rcpt_rates::iterator i=rcpt_counts.begin(); i!=rcpt_counts.end(); i++) { (*i).second = 0; } pthread_mutex_unlock(&rate_mutex); loop = 0; } CONFIG &dc = *config; time_t then = dc.load_time; struct stat st; bool reload = false; for (string_set::iterator i=dc.config_files.begin(); i!=dc.config_files.end(); i++) { char *fn = *i; if (stat(fn, &st)) reload = true; // file disappeared else if (st.st_mtime > then) reload = true; // file modified if (reload) break; } if (reload) { CONFIG *newc = new_conf(); if (newc) { // replace the global config pointer pthread_mutex_lock(&config_mutex); CONFIG *pc = config; bool last = pc && (!pc->reference_count); config = newc; pthread_mutex_unlock(&config_mutex); if (last) delete pc; // there were no references to this config } else { // failed to load new config my_syslog("failed to load new configuration"); system("echo 'failed to load new dnsbl configuration from /etc/dnsbl' | mail -s 'error in /etc/dnsbl configuration' root"); // update the load time on the current config to prevent complaining every 3 minutes dc.load_time = time(NULL); } } } return NULL; } void usage(char *prog); void usage(char *prog) { fprintf(stderr, "Usage: %s [-d [level]] [-c] [-s] [-e from|to] [-b dccifd-addr] -r port -p sm-sock-addr [-t timeout]\n", prog); fprintf(stderr, "where dccifd_addr is for the connection to dccifd\n"); fprintf(stderr, " and should be local-domain-socket-file-name\n"); fprintf(stderr, "where port is for the connection to our own dns resolver processes\n"); fprintf(stderr, " and should be local-domain-socket-file-name\n"); fprintf(stderr, "where sm-sock-addr is for the connection to sendmail\n"); fprintf(stderr, " and should be one of\n"); fprintf(stderr, " inet:port@ip-address\n"); fprintf(stderr, " local:local-domain-socket-file-name\n"); fprintf(stderr, "-c will load and dump the config to stdout\n"); fprintf(stderr, "-s will stress test the config loading code by repeating the load/free cycle\n"); fprintf(stderr, " in an infinte loop.\n"); fprintf(stderr, "-d will set the syslog message level, currently 0 to 3\n"); fprintf(stderr, "-e will print the results of looking up the from and to addresses in the\n"); fprintf(stderr, " current config. The | character is used to separate the from and to\n"); fprintf(stderr, " addresses in the argument to the -e switch\n"); } void setup_socket(char *sock); void setup_socket(char *sock) { unlink(sock); } /* * The signal handler function -- only gets called when a SIGCHLD * is received, ie when a child terminates */ void sig_chld(int signo) { int status; /* Wait for any child without blocking */ while (waitpid(-1, &status, WNOHANG) > 0) { // ignore child exit status, we only do this to cleanup zombies } } int main(int argc, char**argv) { token_init(); bool check = false; bool stress = false; bool setconn = false; bool setreso = false; char *email = NULL; int c; const char *args = "b:r:p:t:e:d:chs"; extern char *optarg; // Process command line options while ((c = getopt(argc, argv, args)) != -1) { switch (c) { case 'b': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal dccifd socket: %s\n", optarg); exit(EX_USAGE); } dccifd_port = strdup(optarg); break; case 'r': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal resolver socket: %s\n", optarg); exit(EX_USAGE); } resolver_port = strdup(optarg); setup_socket(resolver_port); setreso = true; break; case 'p': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal sendmail socket: %s\n", optarg); exit(EX_USAGE); } if (smfi_setconn(optarg) == MI_FAILURE) { fprintf(stderr, "smfi_setconn failed\n"); exit(EX_SOFTWARE); } if (strncasecmp(optarg, "unix:", 5) == 0) setup_socket(optarg + 5); else if (strncasecmp(optarg, "local:", 6) == 0) setup_socket(optarg + 6); setconn = true; break; case 't': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal timeout: %s\n", optarg); exit(EX_USAGE); } if (smfi_settimeout(atoi(optarg)) == MI_FAILURE) { fprintf(stderr, "smfi_settimeout failed\n"); exit(EX_SOFTWARE); } break; case 'e': if (email) free(email); email = strdup(optarg); break; case 'c': check = true; break; case 's': stress = true; break; case 'd': if (optarg == NULL || *optarg == '\0') debug_syslog = 1; else debug_syslog = atoi(optarg); break; case 'h': default: usage(argv[0]); exit(EX_USAGE); } } if (check) { use_syslog = false; debug_syslog = 10; CONFIG *conf = new_conf(); if (conf) { conf->dump(); delete conf; clear_strings(); // for valgrind checking return 0; } else { return 1; // config failed to load } } if (stress) { fprintf(stdout, "stress testing\n"); while (1) { for (int i=0; i<10; i++) { CONFIG *conf = new_conf(); if (conf) delete conf; } fprintf(stdout, "."); fflush(stdout); sleep(1); } } if (email) { char *x = strchr(email, '|'); if (x) { *x = '\0'; char *from = strdup(email); char *to = strdup(x+1); use_syslog = false; CONFIG *conf = new_conf(); if (conf) { CONTEXTP con = conf->find_context(to); char buf[maxlen]; fprintf(stdout, "envelope to <%s> finds context %s\n", to, con->get_full_name(buf,maxlen)); CONTEXTP fc = con->find_context(from); fprintf(stdout, "envelope from <%s> finds context %s\n", from, fc->get_full_name(buf,maxlen)); char *st = fc->find_from(from); fprintf(stdout, "envelope from <%s> finds status %s\n", from, st); delete conf; } } return 0; } if (!setconn) { fprintf(stderr, "%s: Missing required -p argument\n", argv[0]); usage(argv[0]); exit(EX_USAGE); } if (!setreso) { fprintf(stderr, "%s: Missing required -r argument\n", argv[0]); usage(argv[0]); exit(EX_USAGE); } if (smfi_register(smfilter) == MI_FAILURE) { fprintf(stderr, "smfi_register failed\n"); exit(EX_UNAVAILABLE); } // switch to background mode if (daemon(1,0) < 0) { fprintf(stderr, "daemon() call failed\n"); exit(EX_UNAVAILABLE); } // write the pid const char *pidpath = "/var/run/dnsbl.pid"; unlink(pidpath); FILE *f = fopen(pidpath, "w"); if (f) { #ifdef linux // from a comment in the DCC source code: // Linux threads are broken. Signals given the // original process are delivered to only the // thread that happens to have that PID. The // sendmail libmilter thread that needs to hear // SIGINT and other signals does not, and that breaks // scripts that need to stop milters. // However, signaling the process group works. fprintf(f, "-%d\n", (u_int)getpgrp()); #else fprintf(f, "%d\n", (u_int)getpid()); #endif fclose(f); } // initialize the thread sync objects pthread_mutex_init(&config_mutex, 0); pthread_mutex_init(&syslog_mutex, 0); pthread_mutex_init(&resolve_mutex, 0); pthread_mutex_init(&fd_pool_mutex, 0); pthread_mutex_init(&verifier_mutex, 0); pthread_mutex_init(&whitelister_mutex, 0); // drop root privs struct passwd *pw = getpwnam("dnsbl"); if (pw) { if (setgid(pw->pw_gid) == -1) { my_syslog("failed to switch to group dnsbl"); } if (setuid(pw->pw_uid) == -1) { my_syslog("failed to switch to user dnsbl"); } } // load the initial config config = new_conf(); if (!config) { my_syslog("failed to load initial configuration, quitting"); exit(1); } // fork off the resolver listener process pid_t child = fork(); if (child < 0) { my_syslog("failed to create resolver listener process"); exit(0); } if (child == 0) { // we are the child - dns resolver listener process resolver_socket = socket(AF_UNIX, SOCK_STREAM, 0); if (resolver_socket < 0) { my_syslog("child failed to create resolver socket"); exit(0); // failed } sockaddr_un server; memset(&server, '\0', sizeof(server)); server.sun_family = AF_UNIX; strncpy(server.sun_path, resolver_port, sizeof(server.sun_path)-1); //try to bind the address to the socket. if (bind(resolver_socket, (sockaddr *)&server, sizeof(server)) < 0) { // bind failed shutdown(resolver_socket, SHUT_RDWR); close(resolver_socket); my_syslog("child failed to bind resolver socket"); exit(0); // failed } //listen on the socket. if (listen(resolver_socket, 10) < 0) { // listen failed shutdown(resolver_socket, SHUT_RDWR); close(resolver_socket); my_syslog("child failed to listen to resolver socket"); exit(0); // failed } // setup sigchld handler to prevent zombies struct sigaction act; act.sa_handler = sig_chld; // Assign sig_chld as our SIGCHLD handler sigemptyset(&act.sa_mask); // We don't want to block any other signals in this example act.sa_flags = SA_NOCLDSTOP; // only want children that have terminated if (sigaction(SIGCHLD, &act, NULL) < 0) { my_syslog("child failed to setup SIGCHLD handler"); exit(0); // failed } while (true) { sockaddr_un client; socklen_t clientlen = sizeof(client); int s = accept(resolver_socket, (sockaddr *)&client, &clientlen); if (s > 0) { // accept worked, it did not get cancelled before we could accept it // fork off a process to handle this connection int newchild = fork(); if (newchild == 0) { // this is the worker process // child does not need the listening socket close(resolver_socket); process_resolver_requests(s); exit(0); } else { // this is the parent // parent does not need the accepted socket close(s); } } } exit(0); // make sure we don't fall thru. } else { sleep(2); // allow child to get started } // only create threads after the fork() in daemon pthread_t tid; if (pthread_create(&tid, 0, config_loader, 0)) my_syslog("failed to create config loader thread"); if (pthread_detach(tid)) my_syslog("failed to detach config loader thread"); if (pthread_create(&tid, 0, verify_closer, 0)) my_syslog("failed to create verify closer thread"); if (pthread_detach(tid)) my_syslog("failed to detach verify closer thread"); if (pthread_create(&tid, 0, whitelister_writer, 0)) my_syslog("failed to create autowhite writer thread"); if (pthread_detach(tid)) my_syslog("failed to detach autowhite writer thread"); time_t starting = time(NULL); int rc = smfi_main(); if ((rc != MI_SUCCESS) && (time(NULL) > starting+5*60)) { my_syslog("trying to restart after smfi_main()"); loader_run = false; // eventually the config loader thread will terminate execvp(argv[0], argv); } exit((rc == MI_SUCCESS) ? 0 : EX_UNAVAILABLE); }