Mercurial > dnsbl
view src/dnsbl.cpp @ 386:e27e22f6a49a
start parsing spf txt records
author | Carl Byington <carl@five-ten-sg.com> |
---|---|
date | Mon, 06 Mar 2017 15:03:38 -0800 |
parents | be7355b47051 |
children | 616e46e9b8f0 |
line wrap: on
line source
/* Copyright (c) 2013 Carl Byington - 510 Software Group, released under the GPL version 3 or any later version at your choice available at http://www.gnu.org/licenses/gpl-3.0.txt Based on a sample milter Copyright (c) 2000-2003 Sendmail, Inc. and its suppliers. Inspired by the DCC by Rhyolite Software -b port The port used to talk to the dcc interface daemon -r port The port used to talk to our internal dns resolver processes -p port The port through which the MTA will connect to this milter. -t sec The timeout value. -c Check the config, and print a copy to stdout. Don't start the milter or do anything with the socket. -s Stress test by loading and deleting the current config in a loop. -d level set the debug level -e f|t Print the results of looking up from address f and to address t in the current config */ // from sendmail sample #include <sys/types.h> #include <sys/stat.h> #include <errno.h> #include <sysexits.h> #include <unistd.h> // needed for socket io #include <sys/ioctl.h> #include <net/if.h> #include <arpa/inet.h> #include <netinet/in.h> #include <netinet/tcp.h> #include <netdb.h> #include <sys/socket.h> #include <sys/un.h> // needed for thread #include <pthread.h> // needed for std c++ collections #include <set> #include <map> #include <list> // for the dns resolver #include <netinet/in.h> #include <arpa/nameser.h> #include <resolv.h> // misc stuff needed here #include <ctype.h> #include <syslog.h> #include <pwd.h> #include <sys/wait.h> /* header for waitpid() and various macros */ #include <signal.h> /* header for signal functions */ #include "includes.h" #ifndef HAVE_DAEMON #include "daemon.h" #include "daemon.c" #endif #ifndef HAVE_MEMRCHR void *memrchr(const void *a, int c, size_t len); void *memrchr(const void *a, int c, size_t len) { const unsigned char *p = (const unsigned char *)a; for (p += len-1; (const void *)p >= a; p--) if (*p == c) return (void *)p; return (void *)0; } #endif extern "C" { sfsistat mlfi_connect(SMFICTX *ctx, char *hostname, _SOCK_ADDR *hostaddr); sfsistat mlfi_helo(SMFICTX * ctx, char *helohost); sfsistat mlfi_envfrom(SMFICTX *ctx, char **argv); sfsistat mlfi_envrcpt(SMFICTX *ctx, char **argv); sfsistat mlfi_header(SMFICTX* ctx, char* headerf, char* headerv); sfsistat mlfi_body(SMFICTX *ctx, u_char *data, size_t len); sfsistat mlfi_eom(SMFICTX *ctx); sfsistat mlfi_abort(SMFICTX *ctx); sfsistat mlfi_close(SMFICTX *ctx); void sig_chld(int signo); } int debug_syslog = 0; bool syslog_opened = false; bool use_syslog = true; // false to printf bool loader_run = true; // used to stop the config loader thread CONFIG *config = NULL; // protected by the config_mutex int generation = 0; // protected by the config_mutex const int maxlen = 1000; // used for snprintf buffers regex_t srs_pattern; // used to detect srs coding in mail addresses regex_t prvs_pattern; // used to detect prvs coding in mail addresses regex_t dkim_r_pattern; // used to detect dkim signatures authenticated by the upstream opendkim milter regex_t dkim_s_pattern; // used to detect dkim signatures generated by the upstream opendkim milter regex_t from_pattern; // used to extract the senders mail domain from the body from: header pthread_mutex_t config_mutex; pthread_mutex_t syslog_mutex; pthread_mutex_t resolve_mutex; pthread_mutex_t fd_pool_mutex; pthread_mutex_t rate_mutex; std::set<int> fd_pool; int NULL_SOCKET = -1; const time_t ERROR_SOCKET_TIME = 60; // number of seconds between attempts to open a socket to the dns resolver process const char *resolver_port = NULL; // unix domain socket to talk to the dns resolver process int resolver_socket = NULL_SOCKET; // socket used to listen for resolver requests const char *dccifd_port = NULL; // unix domain socket to talk to the dcc interface daemon time_t last_error_time = 0; int resolver_sock_count = 0; // protected with fd_pool_mutex int resolver_pool_size = 0; // protected with fd_pool_mutex rates rcpt_hourly_counts; // protected with rate_mutex rates rcpt_daily_counts; // protected with rate_mutex auth_addresses auth_hourly_addresses; // protected with rate_mutex auth_addresses auth_daily_addresses; // protected with rate_mutex ns_map::~ns_map() { for (string_map::iterator i=ns_host.begin(); i!=ns_host.end(); i++) { const char *x = (*i).first; const char *y = (*i).second; free((void*)x); free((void*)y); } ns_ip.clear(); ns_host.clear(); } void ns_map::add(const char *name, const char *refer) { string_map::iterator i = ns_host.find(name); if (i != ns_host.end()) return; char *x = strdup(name); char *y = strdup(refer); ns_ip[x] = 0; ns_host[x] = y; } // packed structure to allow a single socket write to dump the // length and the following answer. The packing attribute is gcc specific. struct glommer { size_t length; #ifdef NS_PACKETSZ u_char answer[NS_PACKETSZ*8]; // with a resolver, we return resolver answers #else uint32_t answer; // without a resolver, we return a single ipv4 address in network byte order, 0 == no answer #endif } __attribute__ ((packed)); //////////////////////////////////////////////// // helper to manipulate recipient counts // void incr_rcpt_count(const char *user, int &hourly, int &daily); void incr_rcpt_count(const char *user, int &hourly, int &daily) { pthread_mutex_lock(&rate_mutex); rates::iterator i = rcpt_hourly_counts.find(user); hourly = 1; if (i == rcpt_hourly_counts.end()) { user = strdup(user); rcpt_hourly_counts[user] = hourly; } else { hourly = ++((*i).second); } rates::iterator j = rcpt_daily_counts.find(user); daily = 1; if (j == rcpt_daily_counts.end()) { user = strdup(user); rcpt_daily_counts[user] = daily; } else { daily = ++((*j).second); } pthread_mutex_unlock(&rate_mutex); } void add_auth_address(const char *user, int &hourly, int &daily, uint32_t ip); void add_auth_address(const char *user, int &hourly, int &daily, uint32_t ip) { pthread_mutex_lock(&rate_mutex); auth_addresses::iterator i = auth_hourly_addresses.find(user); if (i == auth_hourly_addresses.end()) { user = strdup(user); auth_hourly_addresses[user] = new uint32_t_set; auth_hourly_addresses[user]->insert(ip); hourly = 1; } else { uint32_t_set::iterator k = ((*i).second)->find(ip); if (k == ((*i).second)->end()) ((*i).second)->insert(ip); hourly = ((*i).second)->size(); } auth_addresses::iterator j = auth_daily_addresses.find(user); if (j == auth_daily_addresses.end()) { user = strdup(user); auth_daily_addresses[user] = new uint32_t_set; auth_daily_addresses[user]->insert(ip); daily = 1; } else { uint32_t_set::iterator k = ((*j).second)->find(ip); if (k == ((*j).second)->end()) ((*j).second)->insert(ip); daily = ((*j).second)->size(); } pthread_mutex_unlock(&rate_mutex); } //////////////////////////////////////////////// // helper to discard the strings held by a context_map // void discard(context_map &cm); void discard(context_map &cm) { for (context_map::iterator i=cm.begin(); i!=cm.end(); i++) { const char *x = (*i).first; free((void*)x); } cm.clear(); } //////////////////////////////////////////////// // helper to register a string in a context_map // void register_string(context_map &cm, const char *name, CONTEXT *con); void register_string(context_map &cm, const char *name, CONTEXT *con) { context_map::iterator i = cm.find(name); if (i != cm.end()) return; char *x = strdup(name); cm[x] = con; } //////////////////////////////////////////////// // disconnect the fd from the dns resolver process // void my_disconnect(int sock, bool decrement = true); void my_disconnect(int sock, bool decrement) { if (sock != NULL_SOCKET) { if (decrement) { pthread_mutex_lock(&fd_pool_mutex); resolver_sock_count--; pthread_mutex_unlock(&fd_pool_mutex); } shutdown(sock, SHUT_RDWR); close(sock); } } //////////////////////////////////////////////// // return fd connected to the dns resolver process // int my_connect(); int my_connect() { // if we have had recent errors, don't even try to open the socket if ((time(NULL) - last_error_time) < ERROR_SOCKET_TIME) return NULL_SOCKET; // nothing recent, maybe this time it will work int sock = NULL_SOCKET; sockaddr_un server; memset(&server, '\0', sizeof(server)); server.sun_family = AF_UNIX; strncpy(server.sun_path, resolver_port, sizeof(server.sun_path)-1); sock = socket(AF_UNIX, SOCK_STREAM, 0); if (sock != NULL_SOCKET) { bool rc = (connect(sock, (sockaddr *)&server, sizeof(server)) == 0); if (!rc) { my_disconnect(sock, false); sock = NULL_SOCKET; last_error_time = time(NULL); } } else last_error_time = time(NULL); if (sock != NULL_SOCKET) { pthread_mutex_lock(&fd_pool_mutex); resolver_sock_count++; pthread_mutex_unlock(&fd_pool_mutex); } return sock; } //////////////////////////////////////////////// // Ask a dns question and get an A record answer in network byte order. // We don't try very hard, just using the default resolver retry settings. // If we cannot get an answer, we just accept the mail. // If the qtype is ns_t_txt, the answer is placed in txt_answer which // must be non-null, and the return value can be ignored. // A null string is returned in txt_answer in the case of errors. // If the qtype is ns_t_a, the ip address is returned in network byte order. // IP address 0 is returned in case of errors. // uint32_t dns_interface(mlfiPriv &priv, const char *question, int qtype, bool maybe_ip, ns_map *nameservers, char *txt_answer, size_t txt_size) { if (txt_answer) txt_answer[0] = '\0'; // return null string if there are no txt answers // tell sendmail we are still working #if _FFR_SMFI_PROGRESS if (priv.eom) smfi_progress(priv.ctx); #endif // this part can be done without locking the resolver mutex. Each // milter thread is talking over its own socket to a separate resolver // process, which does the actual dns resolution. if (priv.err) return 0; // cannot ask more questions on this socket. if (maybe_ip && (qtype == ns_t_a)) { // might be a bare ip address, try this first to avoid dns lookups that may not be needed in_addr ip; if (inet_aton(question, &ip)) { return ip.s_addr; } } int8_t qt = qtype; priv.my_write((const char *)&qt, 1);// write the query type size_t n = strlen(question); if (question[n-1] == '.') { priv.my_write(question, n+1); // write the question including the null terminator } else { priv.my_write(question, n); // write the question priv.my_write(".", 2); // and the fully qualified . terminator and null string terminator } glommer glom; char *buf = (char *)&glom; priv.my_read(buf, sizeof(glom.length)); buf += sizeof(glom.length); //#ifdef RESOLVER_DEBUG char text[1000]; snprintf(text, sizeof(text), "dns_interface() wrote question %s and has answer length %d", question, glom.length); my_syslog(text); //#endif if (glom.length == 0) return 0; if (glom.length > sizeof(glom.answer)) { priv.err = true; return 0; // cannot process overlarge answers } priv.my_read(buf, glom.length); #ifdef NS_PACKETSZ // now we need to lock the resolver mutex to keep the milter threads from // stepping on each other while parsing the dns answer. uint32_t ret_address = 0; pthread_mutex_lock(&resolve_mutex); // parse the answer ns_msg handle; ns_rr rr; if (ns_initparse(glom.answer, glom.length, &handle) == 0) { // look for ns names if (nameservers) { ns_map &ns = *nameservers; int rrnum = 0; while (ns_parserr(&handle, ns_s_ns, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == ns_t_ns) { char nam[NS_MAXDNAME+1]; char *n = nam; const u_char *p = ns_rr_rdata(rr); while (((n-nam) < NS_MAXDNAME) && ((size_t)(p-glom.answer) < glom.length) && *p) { size_t s = *(p++); if (s > 191) { // compression pointer s = (s-192)*256 + *(p++); if (s >= glom.length) break; // pointer outside bounds of answer p = glom.answer + s; s = *(p++); } if (s > 0) { if ((size_t)(n-nam) >= (NS_MAXDNAME-s)) break; // destination would overflow name buffer if ((size_t)(p-glom.answer) >= (glom.length-s)) break; // source outside bounds of answer memcpy(n, p, s); n += s; p += s; *(n++) = '.'; } } if (n-nam) n--; // remove trailing . *n = '\0'; // null terminate it ns.add(nam, question); // ns host to lookup later } } rrnum = 0; while (ns_parserr(&handle, ns_s_ar, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == ns_t_a) { char* nam = (char*)ns_rr_name(rr); ns_mapper::iterator i = ns.ns_ip.find(nam); if (i != ns.ns_ip.end()) { // we want this ip address uint32_t address; memcpy(&address, ns_rr_rdata(rr), sizeof(address)); ns.ns_ip[nam] = address; } } } } int rrnum = 0; if (qtype == ns_t_a) { while (ns_parserr(&handle, ns_s_an, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == qtype) { uint32_t address; memcpy(&address, ns_rr_rdata(rr), sizeof(address)); ret_address = address; } } } if ((qtype == ns_t_txt) && (txt_answer) && (txt_size > 7)) { txt_answer[0] = '\0'; // return null string if there are no txt answers txt_size--; // allow room for terminating null; while (ns_parserr(&handle, ns_s_an, rrnum++, &rr) == 0) { if (ns_rr_type(rr) == qtype) { size_t offset = 0; size_t rdlen = ns_rr_rdlen(rr); const unsigned char *rdata = ns_rr_rdata(rr); //#ifdef RESOLVER_DEBUG char text[1000]; snprintf(text, sizeof(text), "found txt record rdlen = %d", rdlen); my_syslog(text); //#endif while ((offset < txt_size) && rdlen) { size_t slen = size_t(*(rdata++)); rdlen--; size_t m = min(slen, rdlen); m = min(m, txt_size-offset); memcpy(txt_answer+offset, rdata, m); offset += m; rdata += m; rdlen -= m; } txt_answer[offset] = '\0'; // trailing null //#ifdef RESOLVER_DEBUG snprintf(text, sizeof(text), "found txt record %s", txt_answer); my_syslog(text); //#endif if (strncasecmp(txt_answer, "v=spf1 ", 7) == 0) break; } } //if (strncasecmp(txt_answer, "v=spf1 ", 7) != 0) { // txt_answer[0] = '\0'; // return null string if there are no spf1 txt answers //} } } pthread_mutex_unlock(&resolve_mutex); #ifdef RESOLVER_DEBUG snprintf(text, sizeof(text), "dns_interface() found ip %d", ret_address); my_syslog(text); #endif return ret_address; #else return glom.answer; #endif } //////////////////////////////////////////////// // lookup a hostname on the uribl // // if we find hostname on the uribl, return true and point found to hostname // as a string registered in hosts. // otherwise, return false and preserve the value of found. // bool uriblookup(mlfiPriv &priv, string_set &hosts, const char *hostname, const char *&found) ; bool uriblookup(mlfiPriv &priv, string_set &hosts, const char *hostname, const char *&found) { char buf[maxlen]; snprintf(buf, sizeof(buf), "%s.%s.", hostname, priv.uribl_suffix); uint32_t ip = ntohl(dns_interface(priv, buf, ns_t_a)); if (ip and (ip != 0x7f000000)) { if (debug_syslog > 2) { char tmp[maxlen]; snprintf(tmp, sizeof(tmp), "found %s on %s", hostname, priv.uribl_suffix); my_syslog(tmp); } found = register_string(hosts, hostname); return true; } return false; } //////////////////////////////////////////////// // uribl checker // ------------- // hostname MUST not have a trailing dot. Find the tld part of // the hostname, and add one more level. If that is listed on // the uribl, return true and point found to the part of the // hostname that we found as a string registered in hosts. // Otherwise, return false and preserve the value of found. // bool check_uribl(mlfiPriv &priv, string_set &hosts, const char *hostname, const char *&found) ; bool check_uribl(mlfiPriv &priv, string_set &hosts, const char *hostname, const char *&found) { in_addr ip; if (inet_aton(hostname, &ip)) return false; // don't check ip addresses in uribls const char* components[maxlen]; int n = 0; // number of components in the hostname while (n < maxlen) { components[n++] = hostname; const char *c = strchr(hostname, '.'); if (!c) break; hostname = c+1; } string_set *tlds = priv.memory->get_tlds(); string_set *tldwilds = priv.memory->get_tldwilds(); string_set *tldnots = priv.memory->get_tldnots(); string_set::iterator xtlds = tlds->end(); string_set::iterator xtldwilds = tldwilds->end(); string_set::iterator xtldnots = tldnots->end(); for (int i=max(0,n-4); i<n; i++) { const char* name = components[i]; bool rc = false; string_set::iterator tt = tldnots->find(name); if (tt != xtldnots) { rc = true; } else { tt = tldwilds->find(name); if (tt != xtldwilds) { if (i > 1) { rc = true; name = components[i-2]; } else return false; } else { tt = tlds->find(name); if (tt != xtlds) { if (i > 0) { rc = true; name = components[i-1]; } else return false; } } } if (rc) { return uriblookup(priv, hosts, name, found); } } return false; } mlfiPriv::mlfiPriv() { pthread_mutex_lock(&config_mutex); pc = config; pc->reference_count++; pthread_mutex_unlock(&config_mutex); get_fd(); ctx = NULL; eom = false; ip = 0; helo = NULL; mailaddr = NULL; origaddr = NULL; fromaddr = NULL; header_count = 0; dkim_ok = true; queueid = NULL; authenticated = NULL; client_name = NULL; client_dns_name = NULL; client_dns_forged = false; host_uribl = NULL; helo_uribl = false; client_uribl = false; from_uribl = false; have_whites = false; only_whites = true; want_spamassassin = false; want_dccgrey = false; want_dccbulk = false; allow_autowhitelisting = true; content_context = NULL; memory = NULL; scanner = NULL; content_suffix = NULL; content_message = NULL; uribl_suffix = NULL; uribl_message = NULL; content_host_ignore = NULL; assassin = NULL; dccifd = NULL; } mlfiPriv::~mlfiPriv() { return_fd(); pthread_mutex_lock(&config_mutex); pc->reference_count--; bool last = (!pc->reference_count) && (pc != config); pthread_mutex_unlock(&config_mutex); if (last) delete pc; // free this config, since we were the last reference to it if (helo) free((void*)helo); reset(true); } void mlfiPriv::reset(bool final) { while (!delayer.empty()) { DELAYWHITEP dwp = delayer.front(); const char *loto = dwp->get_loto(); if (loto) free((void*)loto); delete dwp; delayer.pop_front(); } if (mailaddr) free((void*)mailaddr); if (origaddr) free((void*)origaddr); if (fromaddr) free((void*)fromaddr); if (queueid) free((void*)queueid); if (authenticated) free((void*)authenticated); if (client_name) free((void*)client_name); if (client_dns_name) free((void*)client_dns_name); discard(dkim_signers); discard(hosts_uribl); delayer.clear(); discard(env_to); if (memory) delete memory; if (scanner) delete scanner; if (assassin) delete assassin; if (dccifd) delete dccifd; if (!final) { ctx = NULL; eom = false; mailaddr = NULL; origaddr = NULL; fromaddr = NULL; header_count = 0; dkim_ok = true; queueid = NULL; authenticated = NULL; client_name = NULL; client_dns_name = NULL; host_uribl = NULL; helo_uribl = false; client_uribl = false; from_uribl = false; have_whites = false; only_whites = true; want_spamassassin = false; want_dccgrey = false; want_dccbulk = false; allow_autowhitelisting = true; content_context = NULL; memory = NULL; scanner = NULL; content_suffix = NULL; content_message = NULL; uribl_suffix = NULL; uribl_message = NULL; content_host_ignore = NULL; assassin = NULL; dccifd = NULL; } } void mlfiPriv::get_fd() { err = true; fd = NULL_SOCKET; int result = pthread_mutex_lock(&fd_pool_mutex); if (!result) { std::set<int>::iterator i; i = fd_pool.begin(); if (i != fd_pool.end()) { // have at least one fd in the pool err = false; fd = *i; fd_pool.erase(fd); resolver_pool_size--; pthread_mutex_unlock(&fd_pool_mutex); } else { // pool is empty, get a new fd pthread_mutex_unlock(&fd_pool_mutex); fd = my_connect(); err = (fd == NULL_SOCKET); } } else { // cannot lock the pool, just get a new fd fd = my_connect(); err = (fd == NULL_SOCKET); } } void mlfiPriv::return_fd() { if (err) { // this fd got a socket error, so close it, rather than returning it to the pool my_disconnect(fd); } else { int result = pthread_mutex_lock(&fd_pool_mutex); if (!result) { if ((resolver_sock_count > resolver_pool_size*5) || (resolver_pool_size < 5)) { // return the fd to the pool fd_pool.insert(fd); resolver_pool_size++; pthread_mutex_unlock(&fd_pool_mutex); } else { // more than 20% of the open resolver sockets are in the pool, and the // pool as at least 5 sockets. that is enough, so just close this one. pthread_mutex_unlock(&fd_pool_mutex); my_disconnect(fd); } } else { // could not lock the pool, so just close the fd my_disconnect(fd); } } } size_t mlfiPriv::my_write(const char *buf, size_t len) { if (err) return 0; size_t rs = 0; while (len) { size_t ws = write(fd, buf, len); if (ws > 0) { rs += ws; len -= ws; buf += ws; } else { // peer closed the socket! rs = 0; err = true; break; } } return rs; } size_t mlfiPriv::my_read(char *buf, size_t len) { if (err) return 0; size_t rs = 0; while (len) { size_t ws = read(fd, buf, len); if (ws > 0) { rs += ws; len -= ws; buf += ws; } else { // peer closed the socket! rs = 0; err = true; break; } } return rs; } const char *mlfiPriv::check_uribl_signers() { if (uribl_suffix) { for (string_set::iterator s=dkim_signers.begin(); s!=dkim_signers.end(); s++) { if (check_uribl(*this, hosts_uribl, *s, host_uribl)) return host_uribl; } } return NULL; } void mlfiPriv::need_content_filter(CONTEXT &con) { if (!memory) { // first recipient that needs content filtering sets // some of the content filtering parameters memory = new recorder(this, con.get_html_tags(), con.get_content_tlds(), con.get_content_tldwilds(), con.get_content_tldnots()); scanner = new url_scanner(memory); content_suffix = con.get_content_suffix(); content_message = con.get_content_message(); uribl_suffix = con.get_uribl_suffix(); uribl_message = con.get_uribl_message(); content_host_ignore = &con.get_content_host_ignore(); // if we are using uribl, test helo and client names here if (uribl_suffix) { if (helo) { helo_uribl = check_uribl(*this, hosts_uribl, helo, host_uribl); } if (client_dns_name && !helo_uribl) { client_uribl = check_uribl(*this, hosts_uribl, client_dns_name, host_uribl); } if (mailaddr && !client_uribl) { const char *f = strchr(mailaddr, '@'); if (f) from_uribl = check_uribl(*this, hosts_uribl, f+1, host_uribl); } } } } mlfiPriv* fetch_priv_from_ctx(SMFICTX *ctx); mlfiPriv* fetch_priv_from_ctx(SMFICTX *ctx) { mlfiPriv *priv = (struct mlfiPriv *)smfi_getpriv(ctx); priv->ctx = ctx; return priv; } #define MLFIPRIV fetch_priv_from_ctx(ctx) //////////////////////////////////////////////// // syslog a message // void my_syslog(const char *queueid, const char *text) { char buf[maxlen]; if (queueid && queueid[0]) { snprintf(buf, sizeof(buf), "%s: %s", queueid, text); text = buf; } if (use_syslog) { pthread_mutex_lock(&syslog_mutex); if (!syslog_opened) { openlog("dnsbl", LOG_PID, LOG_MAIL); syslog_opened = true; } syslog(LOG_NOTICE, "%s", text); pthread_mutex_unlock(&syslog_mutex); } else { printf("%s \n", text); } } void my_syslog(mlfiPriv *priv, const char *text) { if (priv) my_syslog(priv->queueid, text); else my_syslog((const char *)NULL, text); } void my_syslog(mlfiPriv *priv, const string text) { if (debug_syslog > 3) { char buf[maxlen]; strncpy(buf, text.c_str(), sizeof(buf)); buf[maxlen-1] = '\0'; // ensure null termination my_syslog(priv, buf); } } void my_syslog(const char *text) { my_syslog((const char *)NULL, text); } //////////////////////////////////////////////// // read a resolver request from the socket, process it, and // write the result back to the socket. void process_resolver_requests(int socket); void process_resolver_requests(int socket) { #ifdef NS_MAXDNAME char question[NS_MAXDNAME]; #else char question[1000]; #endif glommer glom; int maxq = sizeof(question); while (true) { // read a question int rs = 0; while (rs < maxq) { int ns = read(socket, question+rs, maxq-rs); if (ns > 0) { rs += ns; if (question[rs-1] == '\0') { // last byte read was the null terminator, we are done break; } } else { // peer closed the socket #ifdef RESOLVER_DEBUG my_syslog("process_resolver_requests() peer closed socket while reading question"); #endif shutdown(socket, SHUT_RDWR); close(socket); return; } } question[rs-1] = '\0'; // ensure null termination // find the answer #ifdef NS_PACKETSZ int res_result = res_search(question+1, ns_c_in, int8_t(question[0]), glom.answer, sizeof(glom.answer)); //#ifdef RESOLVER_DEBUG char text[1000]; snprintf(text, sizeof(text), "process_resolver_requests() has a question %s qtype %d buf len %d result %d", question+1, int8_t(question[0]), sizeof(glom.answer), res_result); my_syslog(text); //#endif if (res_result < 0) glom.length = 0; // represent all errors as zero length answers else glom.length = (size_t)res_result; #else glom.length = sizeof(glom.answer); glom.answer = 0; int t = int8_t(question[0]); if (t != ns_t_a) { glom.length = 0; } else { struct hostent *host = gethostbyname(question+1); if (host && (host->h_addrtype == AF_INET)) { memcpy(&glom.answer, host->h_addr, sizeof(glom.answer)); } } #endif // write the answer char *buf = (char *)&glom; int len = glom.length + sizeof(glom.length); #ifdef RESOLVER_DEBUG snprintf(text, sizeof(text), "process_resolver_requests() writing answer length %d for total %d", glom.length, len); my_syslog(text); #endif int ws = 0; while (len > ws) { int ns = write(socket, buf+ws, len-ws); if (ns > 0) { ws += ns; } else { // peer closed the socket! #ifdef RESOLVER_DEBUG my_syslog("process_resolver_requests() peer closed socket while writing answer"); #endif shutdown(socket, SHUT_RDWR); close(socket); return; } } } } //////////////////////////////////////////////// // check a single dns list, return ip address in network byte order // uint32_t check_single(mlfiPriv &priv, uint32_t ip, const char *suffix); uint32_t check_single(mlfiPriv &priv, uint32_t ip, const char *suffix) { // make a dns question const u_char *src = (const u_char *)&ip; if (src[0] == 127) return 0; // don't do dns lookups on localhost if (src[0] == 10) return 0; // don't do dns lookups on rfc1918 space if ((src[0] == 192) && (src[1] == 168)) return 0; if ((src[0] == 172) && (16 <= src[1]) && (src[1] <= 31)) return 0; #ifdef NS_MAXDNAME char question[NS_MAXDNAME]; #else char question[1000]; #endif snprintf(question, sizeof(question), "%u.%u.%u.%u.%s.", src[3], src[2], src[1], src[0], suffix); // ask the question, if we get an A record it implies a blacklisted ip address return dns_interface(priv, question, ns_t_a); } //////////////////////////////////////////////// // check a single dnsbl // bool check_single(mlfiPriv &priv, uint32_t ip, DNSBL &bl); bool check_single(mlfiPriv &priv, uint32_t ip, DNSBL &bl) { return check_single(priv, ip, bl.suffix); } //////////////////////////////////////////////// // check a single dnswl // bool check_single(mlfiPriv &priv, uint32_t ip, DNSWL &wl); bool check_single(mlfiPriv &priv, uint32_t ip, DNSWL &wl) { uint32_t r = ntohl(check_single(priv, ip, wl.suffix)); uint32_t v = (uint32_t)0x7f000000; uint32_t m = (uint32_t)0xffff0000; uint32_t m2 = (uint32_t)0x000000ff; if ((r & m) == v) { uint32_t l = r & m2; if ((int)l >= wl.level) return true; } return false; } //////////////////////////////////////////////// // check the dnsbls specified for this recipient // bool check_dnsbl(mlfiPriv &priv, dnsblp_list &dnsbll, DNSBLP &rejectlist); bool check_dnsbl(mlfiPriv &priv, dnsblp_list &dnsbll, DNSBLP &rejectlist) { for (dnsblp_list::iterator i=dnsbll.begin(); i!=dnsbll.end(); i++) { DNSBLP dp = *i; // non null by construction bool st; map<DNSBLP, bool>::iterator f = priv.checked_black.find(dp); if (f == priv.checked_black.end()) { // have not checked this list yet st = check_single(priv, priv.ip, *dp); rejectlist = dp; priv.checked_black[dp] = st; } else { st = (*f).second; rejectlist = (*f).first; } if (st) return st; } return false; } //////////////////////////////////////////////// // check the dnswls specified for this recipient // bool check_dnswl(mlfiPriv &priv, dnswlp_list &dnswll, DNSWLP &acceptlist); bool check_dnswl(mlfiPriv &priv, dnswlp_list &dnswll, DNSWLP &acceptlist) { for (dnswlp_list::iterator i=dnswll.begin(); i!=dnswll.end(); i++) { DNSWLP dp = *i; // non null by construction bool st; map<DNSWLP, bool>::iterator f = priv.checked_white.find(dp); if (f == priv.checked_white.end()) { // have not checked this list yet st = check_single(priv, priv.ip, *dp); acceptlist = dp; priv.checked_white[dp] = st; } else { st = (*f).second; acceptlist = (*f).first; } if (st) return st; } return false; } //////////////////////////////////////////////// // check the hosts from the body against the content filter and uribl dnsbls // // bool check_hosts(mlfiPriv &priv, bool random, int limit, const char *&msg, const char *&host, uint32_t &ip, const char *&found); bool check_hosts(mlfiPriv &priv, bool random, int limit, const char *&msg, const char *&host, uint32_t &ip, const char *&found) { found = NULL; // normally ip address style if (!priv.content_suffix && !priv.uribl_suffix) return false; // nothing to check string_set &hosts = priv.memory->get_hosts(); string_set &ignore = *priv.content_host_ignore; int count = 0; int cnt = hosts.size(); // number of hosts we could look at uint32_t_set ips; ns_map nameservers; for (string_set::iterator i=hosts.begin(); i!=hosts.end(); i++) { host = *i; // a reference into hosts, which will live until this smtp transaction is closed // don't bother looking up hosts on the ignore list string_set::iterator j = ignore.find(host); if (j != ignore.end()) continue; // try to only look at limit/cnt fraction of the available cnt host names in random mode if ((cnt > limit) && (limit > 0) && random) { int r = rand() % cnt; if (r >= limit) { if (debug_syslog > 2) { char buf[maxlen]; snprintf(buf, sizeof(buf), "host %s skipped", host); my_syslog(&priv, buf); } continue; } } count++; ip = dns_interface(priv, host, ns_t_a, true, &nameservers); if (debug_syslog > 2) { char buf[maxlen]; if (ip) { char adr[sizeof "255.255.255.255 "]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&ip, adr, sizeof(adr)); snprintf(buf, sizeof(buf), "host %s found at %s", host, adr); } else { snprintf(buf, sizeof(buf), "host %s not found", host); } my_syslog(&priv, buf); } if (ip) { uint32_t_set::iterator i = ips.find(ip); if (i == ips.end()) { // we haven't looked this up yet ips.insert(ip); // check dnsbl style list if (priv.content_suffix && check_single(priv, ip, priv.content_suffix)) { msg = priv.content_message; return true; } // Check uribl & surbl style list if (priv.uribl_suffix && check_uribl(priv, hosts, host, found)) { msg = priv.uribl_message; return true; } } } } limit *= 4; // allow average of 3 ns per host name for (ns_mapper::iterator i=nameservers.ns_ip.begin(); i!=nameservers.ns_ip.end(); i++) { count++; if ((count > limit) && (limit > 0)) return false; // too many name servers to check them all host = (*i).first; // a transient reference that needs to be replaced before we return it ip = (*i).second; if (!ip) ip = dns_interface(priv, host, ns_t_a); if (debug_syslog > 2) { char buf[maxlen]; if (ip) { char adr[sizeof "255.255.255.255 "]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&ip, adr, sizeof(adr)); snprintf(buf, sizeof(buf), "ns %s found at %s", host, adr); } else { snprintf(buf, sizeof(buf), "ns %s not found", host); } my_syslog(&priv, buf); } if (ip) { uint32_t_set::iterator i = ips.find(ip); if (i == ips.end()) { ips.insert(ip); if (check_single(priv, ip, priv.content_suffix)) { msg = priv.content_message; string_map::iterator j = nameservers.ns_host.find(host); if (j != nameservers.ns_host.end()) { const char *refer = (*j).second; char buf[maxlen]; snprintf(buf, sizeof(buf), "%s with nameserver %s", refer, host); host = register_string(hosts, buf); // put a copy into hosts, and return that reference } else { host = register_string(hosts, host); // put a copy into hosts, and return that reference } return true; } } } } return false; } //////////////////////////////////////////////// // // this email address is passed in from sendmail, and will normally be // enclosed in <>. I think older versions of sendmail supplied the <> // wrapper if the mail client did not, but the current version does not do // that. So the <> wrapper is now optional. It may have mixed case, just // as the mail client sent it. We dup the string and convert the duplicate // to lower case. Some clients enclose the entire address in single quotes, // so we strip those as well. We also remove the SRS and prvs coding. // const char *to_lower_string(const char *email, bool srs = true); const char *to_lower_string(const char *email, bool srs) { if (!email) return strdup("<>"); size_t n = strlen(email); if ((n > 1) && (email[0] == '<') && (email[n-1] == '>')) { n -= 2; email++; } if ((n > 1) && (email[0] == '\'') && (email[n-1] == '\'')) { n -= 2; email++; } if (n == 0) return strdup("<>"); char *key = strdup(email); key[n] = '\0'; for (size_t i=0; i<n; i++) key[i] = tolower(key[i]); if (srs) { if ((n > 14) && (strncmp(key, "srs", 3) == 0)) { // might have srs coding to be removed const int nmatch = 7; regmatch_t match[nmatch]; if (0 == regexec(&srs_pattern, key, nmatch, match, 0)) { int s4 = match[5].rm_so; // domain int e4 = match[5].rm_eo; int s5 = match[6].rm_so; // user int e5 = match[6].rm_eo; if ((s4 != -1) && (s5 != -1)) { char *newkey = strdup(key); // large enough key[e4] = '\0'; key[e5] = '\0'; strcpy(newkey, key+s5); // user strcat(newkey, "@"); // @ strcat(newkey, key+s4); // domain free(key); key = newkey; } } } if ((n > 7) && (strncmp(key, "prvs", 4) == 0)) { // might have prvs coding to be removed const int nmatch = 3; regmatch_t match[nmatch]; if (0 == regexec(&prvs_pattern, key, nmatch, match, 0)) { int s2 = match[2].rm_so; // user@domain if (s2 != -1) { char *newkey = strdup(key+s2); // user@domain free(key); key = newkey; } } } } return key; } //////////////////////////////////////////////// // start of sendmail milter interfaces // sfsistat mlfi_connect(SMFICTX *ctx, char *hostname, _SOCK_ADDR *hostaddr) { // allocate some private memory mlfiPriv *priv = new mlfiPriv; if (hostaddr && (hostaddr->sa_family == AF_INET)) { priv->ip = ((struct sockaddr_in *)hostaddr)->sin_addr.s_addr; } // save the private data smfi_setpriv(ctx, (void*)priv); // continue processing return SMFIS_CONTINUE; } sfsistat mlfi_helo(SMFICTX * ctx, char *helohost) { mlfiPriv &priv = *MLFIPRIV; priv.helo = strdup(helohost); return SMFIS_CONTINUE; } sfsistat mlfi_envfrom(SMFICTX *ctx, char **from) { mlfiPriv &priv = *MLFIPRIV; CONFIG &dc = *priv.pc; priv.origaddr = to_lower_string(from[0], false); priv.mailaddr = to_lower_string(from[0]); priv.queueid = strdup(smfi_getsymval(ctx, (char*)"i")); priv.authenticated = smfi_getsymval(ctx, (char*)"{auth_authen}"); priv.client_name = smfi_getsymval(ctx, (char*)"_"); if (!priv.helo) priv.helo = strdup("unknown"); if (priv.authenticated) priv.authenticated = strdup(priv.authenticated); if (priv.client_name) { priv.client_name = strdup(priv.client_name); const char *p = strstr(priv.client_name, " ["); if (p) { uint pp = p - priv.client_name; priv.client_dns_name = strdup(priv.client_name); priv.client_dns_name[pp] = '\0'; //char text[500]; //snprintf(text, sizeof(text), "found simple dns client name %s", priv.client_dns_name); //my_syslog(text); } p = strstr(priv.client_name, "] (may be forged)"); if (p) { priv.client_dns_forged = true; if (priv.client_dns_name) { char text[500]; snprintf(text, sizeof(text), "forged dns client name %s", priv.client_dns_name); my_syslog(text); } } } if (spamc != spamc_empty) { priv.assassin = new SpamAssassin(&priv, priv.ip, priv.helo, priv.mailaddr, priv.queueid); } if (dccifd_port) { priv.dccifd = new DccInterface(dccifd_port, &priv, priv.ip, priv.helo, priv.mailaddr); } if (priv.authenticated) { int hourly, daily; add_auth_address(priv.authenticated, hourly, daily, priv.ip); int h_limit = dc.default_context->find_address_limit(priv.authenticated); int d_limit = dc.default_context->get_daily_address_multiple() * h_limit; if (debug_syslog > 1) { char msg[maxlen]; snprintf(msg, sizeof(msg), "connect for %s (%d %d addresses, %d %d limits)", priv.authenticated, hourly, daily, h_limit, d_limit); my_syslog(&priv, msg); } if ((hourly > h_limit) || (daily > d_limit)){ smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"unique connection ip address limit exceeded"); return SMFIS_REJECT; } } return SMFIS_CONTINUE; } sfsistat mlfi_envrcpt(SMFICTX *ctx, char **rcpt) { DNSBLP rejectlist = NULL; // list that caused the reject mlfiPriv &priv = *MLFIPRIV; CONFIG &dc = *priv.pc; const char *rcptaddr = rcpt[0]; const char *loto = to_lower_string(rcptaddr); bool self = (strcmp(loto, priv.mailaddr) == 0); const u_char *src = (const u_char *)&priv.ip; bool local_source = (src[0] == 127); bool from_root = (strncasecmp(priv.mailaddr, "root@", 5) == 0); // some version of sendmail allowed rcpt to:<> and passed it thru to the milters if (strcmp(loto, "<>") == 0) { smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"bogus recipient"); free((void*)loto); // cppcheck static analysis found memory leak return SMFIS_REJECT; } // priv.mailaddr sending original message to loto CONTEXT &con = *(dc.find_context(loto)->find_context(priv.mailaddr)); VERIFYP ver = con.find_verify(loto); const char *fromvalue = con.find_from(priv.mailaddr, true, priv.queueid); // tell spam assassin and dccifd about this recipient if (priv.assassin) priv.assassin->mlfi_envrcpt(ctx, loto); if (priv.dccifd) priv.dccifd->mlfi_envrcpt(ctx, loto, con.get_grey() && !priv.authenticated); // loto sending a reply back to priv.mailaddr CONTEXT &con2 = *(dc.find_context(priv.mailaddr)->find_context(loto)); const char *replyvalue = con2.find_from(loto); if (debug_syslog > 1) { char buf[maxlen]; char buf2[maxlen]; char msg[maxlen]; snprintf(msg, sizeof(msg), "from <%s> to <%s> using context %s state %s reply context %s state %s", priv.mailaddr, loto, con.get_full_name(buf,maxlen), fromvalue, con2.get_full_name(buf2,maxlen), replyvalue); my_syslog(&priv, msg); } free((void*)loto); status st = oksofar; if (replyvalue == token_black) { smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"recipient can not reply due to blacklisting"); return SMFIS_REJECT; } if (priv.authenticated) { int hourly, daily; incr_rcpt_count(priv.authenticated, hourly, daily); int h_limit = dc.default_context->find_rate_limit(priv.authenticated); int d_limit = dc.default_context->get_daily_rate_multiple() * h_limit; if (debug_syslog > 1) { char msg[maxlen]; snprintf(msg, sizeof(msg), "authenticated id %s (%d %d recipients, %d %d limits)", priv.authenticated, hourly, daily, h_limit, d_limit); my_syslog(&priv, msg); } if ((hourly > h_limit) || (daily > d_limit)){ smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"recipient rate limit exceeded"); return SMFIS_REJECT; } st = white; } else if (fromvalue == token_black) { st = black; } else if ((fromvalue == token_white) && (local_source || from_root)) { st = white; } else if ((fromvalue == token_white) && !self) { // whitelisting based on envelope from value, but ignore it if // we have a dkim requirement for the original domain const char *domain = strchr(priv.origaddr, '@'); if (domain) { DKIMP dk = con.find_dkim_from(domain+1); if (dk && (dk->action == token_require_signed)) { my_syslog(&priv, "dkim require_signed overrides envelope from whitelist"); st = oksofar; } else st = white; } else st = white; // might be <>, envelope from has no @ } if (st == oksofar) { // check the dns based lists, whitelist first DNSWLP acceptlist = NULL; // list that caused the whitelisting if (check_dnswl(priv, con.get_dnswl_list(), acceptlist)) { st = white; if (debug_syslog > 1) { char msg[maxlen]; snprintf(msg, sizeof(msg), "whitelisted by %s", acceptlist->name); my_syslog(&priv, msg); } } else if (check_dnsbl(priv, con.get_dnsbl_list(), rejectlist)) { // reject the recipient based on some dnsbl char adr[sizeof "255.255.255.255 "]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&priv.ip, adr, sizeof(adr)); char buf[maxlen]; snprintf(buf, sizeof(buf), rejectlist->message, adr, adr); smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", buf); return SMFIS_REJECT; } } if (st == oksofar) { // check forged rdns if (con.get_requirerdns() && (!priv.client_dns_name || priv.client_dns_forged)) { // reject the recipient based on forged reverse dns char buf[maxlen]; snprintf(buf, sizeof(buf), "%s is not acceptable", priv.client_name); smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", buf); return SMFIS_REJECT; } // check generic rdns if (priv.client_dns_name) { const char *msg = con.generic_match(priv.client_dns_name); if (msg) { // reject the recipient based on generic reverse dns char buf[maxlen]; snprintf(buf, sizeof(buf), msg, priv.client_name); smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", buf); return SMFIS_REJECT; } } } if (st == black) { // reject the recipient based on blacklisting either from or to smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"no such user"); return SMFIS_REJECT; } if (ver) { // try to verify the original from/to pair of addresses even if it might be explicitly whitelisted const char *loto = to_lower_string(rcptaddr, false); bool rc = ver->ok(priv.queueid, priv.origaddr, loto); free((void*)loto); if (!rc) { smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"no such user"); return SMFIS_REJECT; } } if (!priv.authenticated && dc.default_context->is_unauthenticated_limited(priv.mailaddr)) { int hourly, daily; incr_rcpt_count(priv.mailaddr, hourly, daily); int h_limit = dc.default_context->find_rate_limit(priv.mailaddr); int d_limit = dc.default_context->get_daily_rate_multiple() * h_limit; if (debug_syslog > 1) { char msg[maxlen]; snprintf(msg, sizeof(msg), "unauthenticated address %s (%d %d recipients, %d %d limits)", priv.mailaddr, hourly, daily, h_limit, d_limit); my_syslog(&priv, msg); } if ((hourly > h_limit) || (daily > d_limit)){ smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", (char*)"recipient rate limit exceeded"); return SMFIS_REJECT; } } // we will accept the recipient, but add an auto-whitelist entry // if needed to ensure we can accept replies loto = to_lower_string(rcptaddr); WHITELISTERP w = con2.find_autowhite(loto, priv.mailaddr); // check if local part is too big const int max_local_size = 30; const char *p = strchr(loto, '@'); int len = (p) ? p-loto : max_local_size; if (len >= max_local_size) w = NULL; // too big, pretend we don't have a whitelister // ignore auto whitelisting from outgoing mail from localhost if (local_source) w = NULL; // outgoing mail from localhost, pretend we don't have a whitelister // record it if we have a whitelister if (w) { DELAYWHITEP dwp = new DELAYWHITE(loto, w, &con2); // dwp takes ownership of the string priv.delayer.push_back(dwp); } else { free((void*)loto); // or we free it here } // accept the recipient if (!con.get_content_filtering()) st = white; if (st == oksofar) { // remember first content filtering context if (con.get_content_filtering()) { if (!priv.content_context) priv.content_context = &con; else if (con.get_require() && (priv.content_context != &con)) { smfi_setreply(ctx, (char*)"452", (char*)"4.2.1", (char*)"incompatible filtering contexts"); return SMFIS_TEMPFAIL; } priv.need_content_filter(con); char bu[maxlen]; bool uri = false; // content filtering implies also checking helo name on uribl (if enabled) if (priv.helo_uribl) { snprintf(bu, sizeof(bu), "(helo %s)", priv.host_uribl); uri = true; } // content filtering implies also checking client reverse dns name on uribl (if enabled) if (priv.client_uribl) { snprintf(bu, sizeof(bu), "(rdns %s)", priv.host_uribl); uri = true; } // content filtering implies also checking mail from domain name on uribl (if enabled) if (priv.from_uribl) { snprintf(bu, sizeof(bu), "(from %s)", priv.host_uribl); uri = true; } if (uri) { char buf[maxlen]; snprintf(buf, sizeof(buf), priv.uribl_message, bu, priv.host_uribl); smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", buf); return SMFIS_REJECT; } } // remember the non-whites register_string(priv.env_to, rcptaddr, &con); priv.only_whites = false; priv.want_spamassassin |= (priv.assassin) && // have spam assassin available and (con.get_spamassassin_limit() != 0); // want to use it with a non-zero score priv.want_dccgrey |= (priv.dccifd) && // have dcc interface and (con.get_grey()); // want to use it for greylisting priv.want_dccbulk |= (priv.dccifd) && // have dcc interface and (con.get_bulk() != 0); // want to use it for bulk detection } if (st == white) { priv.have_whites = true; } return SMFIS_CONTINUE; } sfsistat mlfi_header(SMFICTX* ctx, char* headerf, char* headerv) { mlfiPriv &priv = *MLFIPRIV; priv.header_count++; char *value = headerv; if ((priv.header_count < 4) || (strcasecmp(headerf, "from") == 0)) { for (size_t i=0; i<strlen(value); i++) { if (value[i] < 0x20) value[i] = ' '; } } if (priv.dkim_ok) { if ((priv.header_count == 1) && (strcasecmp(headerf, "DKIM-Filter") != 0)) priv.dkim_ok = false; if (priv.header_count == 2) { if ((strcasecmp(headerf, "Authentication-Results") == 0) && (strncasecmp(headerv, token_myhostname, strlen(token_myhostname)) == 0)) { const int nmatch = 2; regmatch_t match[nmatch]; while (true) { if (0 == regexec(&dkim_r_pattern, value, nmatch, match, 0)) { int s1 = match[1].rm_so; // domain int e1 = match[1].rm_eo; if (s1 != -1) { char save = value[e1]; value[e1] = '\0'; priv.dkim_signers.insert(strdup(value+s1)); value[e1] = save; value += e1 + 1; } else break; } else break; } } else if (strcasecmp(headerf, "DKIM-Signature") == 0) { const int nmatch = 2; regmatch_t match[nmatch]; if (0 == regexec(&dkim_s_pattern, value, nmatch, match, 0)) { int s1 = match[1].rm_so; // domain int e1 = match[1].rm_eo; if (s1 != -1) { char save = value[e1]; value[e1] = '\0'; priv.dkim_signers.insert(strdup(value+s1)); value[e1] = save; } } } else priv.dkim_ok = false; } } // only look at the first from header // this does NOT fully parse rfc2822 from: headers. In particular, embedded // comments and quoted @ are not handled. if ((!priv.fromaddr) && (strcasecmp(headerf, "from") == 0)) { const int nmatch = 2; regmatch_t match[nmatch]; if (0 == regexec(&from_pattern, value, nmatch, match, 0)) { int s1 = match[1].rm_so; // domain int e1 = match[1].rm_eo; if (s1 != -1) { char save = value[e1]; value[e1] = '\0'; priv.fromaddr = to_lower_string(value+s1, false); value[e1] = save; } } } // headers that avoid autowhitelisting if (((strcasecmp(headerf, "precedence") == 0) && (strcasecmp(headerv, "bulk") == 0)) || ((strcasecmp(headerf, "content-type") == 0) && (strncasecmp(headerv, "multipart/report", 16) == 0))) { priv.allow_autowhitelisting = false; } // other headers are only needed for content filtering if (priv.authenticated) return SMFIS_CONTINUE; if (priv.only_whites) return SMFIS_CONTINUE; if (priv.want_spamassassin) priv.assassin->mlfi_header(headerf, headerv); if (priv.want_dccgrey || priv.want_dccbulk) priv.dccifd->mlfi_header(ctx, headerf, headerv); return SMFIS_CONTINUE; } sfsistat mlfi_eoh(SMFICTX* ctx) { mlfiPriv &priv = *MLFIPRIV; // delayed autowhitelisting while (!priv.delayer.empty()) { DELAYWHITEP dwp = priv.delayer.front(); const char *loto = dwp->get_loto(); if (priv.allow_autowhitelisting) { WHITELISTERP w = dwp->get_w(); CONTEXTP con2 = dwp->get_con(); if (debug_syslog > 1) { char buf[maxlen]; char msg[maxlen]; snprintf(msg, sizeof(msg), "whitelist reply from <%s> in context %s", loto, con2->get_full_name(buf,maxlen)); my_syslog(&priv, msg); } w->sent(loto); // don't free it, the whitelister takes ownership of the string } else { if (debug_syslog > 1) { char msg[maxlen]; snprintf(msg, sizeof(msg), "avoid whitelist reply from <%s> for outgoing auto-responder", loto); my_syslog(&priv, msg); } if (loto) free((void*)loto);// or we free it here } delete dwp; priv.delayer.pop_front(); } // content filtering if (priv.authenticated) return SMFIS_CONTINUE; if (priv.only_whites) return SMFIS_CONTINUE; if (priv.want_spamassassin) priv.assassin->mlfi_eoh(); if (priv.want_dccgrey || priv.want_dccbulk) priv.dccifd->mlfi_eoh(); return SMFIS_CONTINUE; } sfsistat mlfi_body(SMFICTX *ctx, u_char *data, size_t len) { mlfiPriv &priv = *MLFIPRIV; if (priv.authenticated) return SMFIS_CONTINUE; if (priv.only_whites) return SMFIS_CONTINUE; if (priv.want_spamassassin) priv.assassin->mlfi_body(data, len); if (priv.want_dccgrey || priv.want_dccbulk) priv.dccifd->mlfi_body(data, len); priv.scanner->scan(data, len); return SMFIS_CONTINUE; } sfsistat mlfi_eom(SMFICTX *ctx) { sfsistat rc; mlfiPriv &priv = *MLFIPRIV; const char *host = NULL; uint32_t ip; // process end of message priv.eom = true; if (priv.authenticated || priv.only_whites) rc = SMFIS_CONTINUE; else { // assert env_to not empty, it contains the // non-whitelisted folks that want content filtering int score = (priv.want_spamassassin) ? priv.assassin->mlfi_eom() : 0; bool grey = false; int bulk = 0; if (priv.want_dccgrey || priv.want_dccbulk) priv.dccifd->mlfi_eom(grey, bulk); char buf[maxlen]; string msg; string_set unknowns; bool random = false; int limit = 0; const char *signer = NULL; bool checked_signers = false; if (priv.dkim_signers.empty()) { snprintf(buf, sizeof(buf), "acceptable content from %s signer *", (priv.fromaddr) ? priv.fromaddr : token_asterisk); my_syslog(&priv, buf); } else { for (string_set::iterator s=priv.dkim_signers.begin(); s!=priv.dkim_signers.end(); s++) { snprintf(buf, sizeof(buf), "acceptable content from %s signer %s", (priv.fromaddr) ? priv.fromaddr : token_asterisk, *s); my_syslog(&priv, buf); } } for (context_map::iterator i=priv.env_to.begin(); i!=priv.env_to.end(); i++) { const char *rcpt = (*i).first; CONTEXT &con = *((*i).second); const char *st = con.acceptable_content(*priv.memory, score, bulk, priv.queueid, priv.dkim_signers, priv.fromaddr, &priv, msg); if (st == token_black) { // bad html tags or excessive hosts or // high spam assassin score or dcc bulk threshold exceedeed // or signed by a dkim signer that we don't like // or header from requires dkim signer that is missing smfi_delrcpt(ctx, (char*)rcpt); } else if (st == token_unknown) { if (!checked_signers) { signer = priv.check_uribl_signers(); checked_signers = true; if (signer) { snprintf(buf, sizeof(buf), "dkim signer %s listed on %s", signer, priv.uribl_suffix); my_syslog(&priv, buf); snprintf(buf, sizeof(buf), "Mail rejected - dkim signed by %s listed on %s", signer, priv.uribl_suffix); msg = string(buf); } } if (signer) { // dkim signer is on the uribl smfi_delrcpt(ctx, (char*)rcpt); } else { // still unknown unknowns.insert(rcpt); random |= con.get_host_random(); limit = max(limit, con.get_host_limit()); } } else if (st == token_white) { priv.have_whites = true; } } bool rejecting_unknowns = unknowns.empty(); if (!rejecting_unknowns) { // check hosts for those recipients const char *fmt; const char *found; if (check_hosts(priv, random, limit, fmt, host, ip, found)) { if (found) { // uribl style snprintf(buf, sizeof(buf), fmt, host, found); } else { // dnsbl style char adr[sizeof "255.255.255.255 "]; adr[0] = '\0'; inet_ntop(AF_INET, (const u_char *)&ip, adr, sizeof(adr)); snprintf(buf, sizeof(buf), fmt, host, adr); } msg = string(buf); rejecting_unknowns = true; } } if (!rejecting_unknowns) { // greylist the unknowns if we don't have any whitelisted recipients if (priv.want_dccgrey && grey && !priv.have_whites) { smfi_setreply(ctx, (char*)"452", (char*)"4.2.1", (char*)"temporary greylist embargoed"); rc = SMFIS_TEMPFAIL; } else rc = SMFIS_CONTINUE; } else if (!priv.have_whites) { // can reject the entire message snprintf(buf, sizeof(buf), "%s", msg.c_str()); smfi_setreply(ctx, (char*)"550", (char*)"5.7.1", buf); rc = SMFIS_REJECT; } else { // need to accept it but remove the recipients that don't want it for (string_set::iterator i=unknowns.begin(); i!=unknowns.end(); i++) { const char *rcpt = *i; smfi_delrcpt(ctx, (char*)rcpt); } rc = SMFIS_CONTINUE; } } // reset for a new message on the same connection mlfi_abort(ctx); return rc; } sfsistat mlfi_abort(SMFICTX *ctx) { mlfiPriv &priv = *MLFIPRIV; priv.reset(); return SMFIS_CONTINUE; } sfsistat mlfi_close(SMFICTX *ctx) { mlfiPriv *priv = MLFIPRIV; if (!priv) return SMFIS_CONTINUE; delete priv; smfi_setpriv(ctx, NULL); return SMFIS_CONTINUE; } struct smfiDesc smfilter = { (char*)"DNSBL", // filter name SMFI_VERSION, // version code -- do not change SMFIF_DELRCPT, // flags mlfi_connect, // connection info filter mlfi_helo, // SMTP HELO command filter mlfi_envfrom, // envelope sender filter mlfi_envrcpt, // envelope recipient filter mlfi_header, // header filter mlfi_eoh, // end of header mlfi_body, // body block filter mlfi_eom, // end of message mlfi_abort, // message aborted mlfi_close, // connection cleanup }; //////////////////////////////////////////////// // reload the config // CONFIG* new_conf(); CONFIG* new_conf() { CONFIG *newc = new CONFIG; pthread_mutex_lock(&config_mutex); newc->generation = generation++; pthread_mutex_unlock(&config_mutex); if (debug_syslog) { char buf[maxlen]; snprintf(buf, sizeof(buf), "loading configuration generation %d", newc->generation); my_syslog(buf); } if (load_conf(*newc, "dnsbl.conf")) { newc->load_time = time(NULL); return newc; } delete newc; return NULL; } //////////////////////////////////////////////// // thread to watch the old config files for changes // and reload when needed. // we also clear the SMTP AUTH recipient counts hourly // extern "C" {void* config_loader(void *arg);} void* config_loader(void *arg) { int loop1 = 0; int loop2 = 0; while (loader_run) { sleep(180); // look for modifications every 3 minutes if (!loader_run) break; loop1++; loop2++; if (loop1 == 20) { // three minutes thru each loop, 20 loops per hour // clear the recipient hourly counts and hourly sets of ip connection addresses pthread_mutex_lock(&rate_mutex); for (rates::iterator i=rcpt_hourly_counts.begin(); i!=rcpt_hourly_counts.end(); i++) { (*i).second = 0; } for (auth_addresses::iterator j=auth_hourly_addresses.begin(); j!=auth_hourly_addresses.end(); j++) { delete (*j).second; (*j).second = new uint32_t_set; } pthread_mutex_unlock(&rate_mutex); loop1 = 0; } if (loop2 == 480) { // three minutes thru each loop, 480 loops per day // clear the recipient daily counts and daily sets of connection ip addresses pthread_mutex_lock(&rate_mutex); for (rates::iterator i=rcpt_daily_counts.begin(); i!=rcpt_daily_counts.end(); i++) { (*i).second = 0; } for (auth_addresses::iterator j=auth_daily_addresses.begin(); j!=auth_daily_addresses.end(); j++) { delete (*j).second; (*j).second = new uint32_t_set; } pthread_mutex_unlock(&rate_mutex); loop2 = 0; } CONFIG &dc = *config; time_t then = dc.load_time; struct stat st; bool reload = false; for (string_set::iterator i=dc.config_files.begin(); i!=dc.config_files.end(); i++) { const char *fn = *i; if (stat(fn, &st)) reload = true; // file disappeared else if (st.st_mtime > then) reload = true; // file modified if (reload) break; } if (reload) { CONFIG *newc = new_conf(); if (newc) { // replace the global config pointer pthread_mutex_lock(&config_mutex); CONFIG *pc = config; bool last = pc && (!pc->reference_count); config = newc; pthread_mutex_unlock(&config_mutex); if (last) delete pc; // there were no references to this config } else { // failed to load new config my_syslog("failed to load new configuration"); system("echo 'failed to load new dnsbl configuration from /etc/dnsbl' | mail -s 'error in /etc/dnsbl configuration' root"); // update the load time on the current config to prevent complaining every 3 minutes dc.load_time = time(NULL); } } } return NULL; } void usage(const char *prog); void usage(const char *prog) { fprintf(stderr, "Usage: %s [-d [level]] [-c] [-s] [-e from|to] [-b dccifd-addr] -r port -p sm-sock-addr [-t timeout]\n", prog); fprintf(stderr, "where dccifd_addr is for the connection to dccifd\n"); fprintf(stderr, " and should be local-domain-socket-file-name\n"); fprintf(stderr, "where port is for the connection to our own dns resolver processes\n"); fprintf(stderr, " and should be local-domain-socket-file-name\n"); fprintf(stderr, "where sm-sock-addr is for the connection to sendmail\n"); fprintf(stderr, " and should be one of\n"); fprintf(stderr, " inet:port@ip-address\n"); fprintf(stderr, " local:local-domain-socket-file-name\n"); fprintf(stderr, "-c will load and dump the config to stdout\n"); fprintf(stderr, "-s will stress test the config loading code by repeating the load/free cycle\n"); fprintf(stderr, " in an infinte loop.\n"); fprintf(stderr, "-d will set the syslog message level, currently 0 to 3\n"); fprintf(stderr, "-e will print the results of looking up the from and to addresses in the\n"); fprintf(stderr, " current config. The | character is used to separate the from and to\n"); fprintf(stderr, " addresses in the argument to the -e switch\n"); } void setup_socket(const char *sock); void setup_socket(const char *sock) { unlink(sock); } /* * The signal handler function -- only gets called when a SIGCHLD * is received, ie when a child terminates */ void sig_chld(int signo) { int status; /* Wait for any child without blocking */ while (waitpid(-1, &status, WNOHANG) > 0) { // ignore child exit status, we only do this to cleanup zombies } } int main(int argc, char**argv) { token_init(); bool check = false; bool stress = false; bool setconn = false; bool setreso = false; char *email = NULL; int c; const char *args = "b:r:p:t:e:d:chs"; extern char *optarg; // setup srs coding detection if (regcomp(&srs_pattern, "^srs(0|1)(=|\\+)([^=]+)=([^=]+)=([^=]+)=([^@]+)@", REG_ICASE | REG_EXTENDED)) { printf("cannot compile regex pattern to find srs coding in mail addresses\n"); exit(3); } // setup prvs coding detection if (regcomp(&prvs_pattern, "^prvs=([^=]+)=(.+)$", REG_ICASE | REG_EXTENDED)) { printf("cannot compile regex pattern to find prvs coding in mail addresses\n"); exit(3); } // setup dkim results signature detection if (regcomp(&dkim_r_pattern, "\\sdkim=pass\\s*.[0-9]*-bit key.\\s*header.d=([^ ]+)\\s", REG_ICASE | REG_EXTENDED)) { printf("cannot compile regex pattern to find dkim results signatures\n"); exit(3); } // setup dkim results signature detection if (regcomp(&dkim_s_pattern, "\\sd=([^;]+);", REG_ICASE | REG_EXTENDED)) { printf("cannot compile regex pattern to find dkim signatures\n"); exit(3); } // setup from domain extraction if (regcomp(&from_pattern, ".*@([a-zA-Z0-9.-]+)", REG_ICASE | REG_EXTENDED)) { printf("cannot compile regex pattern to find dkim signatures\n"); exit(3); } // Process command line options while ((c = getopt(argc, argv, args)) != -1) { switch (c) { case 'b': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal dccifd socket: %s\n", optarg); exit(EX_USAGE); } dccifd_port = strdup(optarg); break; case 'r': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal resolver socket: %s\n", optarg); exit(EX_USAGE); } resolver_port = strdup(optarg); setup_socket(resolver_port); setreso = true; break; case 'p': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal sendmail socket: %s\n", optarg); exit(EX_USAGE); } if (smfi_setconn(optarg) == MI_FAILURE) { fprintf(stderr, "smfi_setconn failed\n"); exit(EX_SOFTWARE); } if (strncasecmp(optarg, "unix:", 5) == 0) setup_socket(optarg + 5); else if (strncasecmp(optarg, "local:", 6) == 0) setup_socket(optarg + 6); setconn = true; break; case 't': if (optarg == NULL || *optarg == '\0') { fprintf(stderr, "Illegal timeout: %s\n", optarg); exit(EX_USAGE); } if (smfi_settimeout(atoi(optarg)) == MI_FAILURE) { fprintf(stderr, "smfi_settimeout failed\n"); exit(EX_SOFTWARE); } break; case 'e': if (email) free((void*)email); email = strdup(optarg); break; case 'c': check = true; break; case 's': stress = true; break; case 'd': if (optarg == NULL || *optarg == '\0') debug_syslog = 1; else debug_syslog = atoi(optarg); break; case 'h': default: usage(argv[0]); exit(EX_USAGE); } } if (check) { use_syslog = false; debug_syslog = 10; CONFIG *conf = new_conf(); if (conf) { conf->dump(); delete conf; clear_strings(); // for valgrind checking return 0; } else { return 1; // config failed to load } } if (stress) { fprintf(stdout, "stress testing\n"); while (1) { for (int i=0; i<10; i++) { CONFIG *conf = new_conf(); if (conf) delete conf; } fprintf(stdout, "."); fflush(stdout); sleep(1); } } if (email) { char *x = strchr(email, '|'); if (x) { *x = '\0'; const char *from = to_lower_string(email); const char *to = to_lower_string(x+1); use_syslog = false; CONFIG *conf = new_conf(); if (conf) { CONTEXTP con = conf->find_context(to); char buf[maxlen]; fprintf(stdout, "envelope to <%s> finds context %s\n", to, con->get_full_name(buf,maxlen)); CONTEXTP fc = con->find_context(from); fprintf(stdout, "envelope from <%s> finds context %s\n", from, fc->get_full_name(buf,maxlen)); const char *st = fc->find_from(from); fprintf(stdout, "envelope from <%s> finds status %s\n", from, st); bool self = (strcmp(from, to) == 0); if ((st == token_white) && self) fprintf(stdout, "ignore self whitelisting\n"); delete conf; } } return 0; } if (!setconn) { fprintf(stderr, "%s: Missing required -p argument\n", argv[0]); usage(argv[0]); exit(EX_USAGE); } if (!setreso) { fprintf(stderr, "%s: Missing required -r argument\n", argv[0]); usage(argv[0]); exit(EX_USAGE); } if (smfi_register(smfilter) == MI_FAILURE) { fprintf(stderr, "smfi_register failed\n"); exit(EX_UNAVAILABLE); } // switch to background mode if (daemon(1,0) < 0) { fprintf(stderr, "daemon() call failed\n"); exit(EX_UNAVAILABLE); } // write the pid const char *pidpath = "/var/run/dnsbl.pid"; unlink(pidpath); FILE *f = fopen(pidpath, "w"); if (f) { #ifdef linux // from a comment in the DCC source code: // Linux threads are broken. Signals given the // original process are delivered to only the // thread that happens to have that PID. The // sendmail libmilter thread that needs to hear // SIGINT and other signals does not, and that breaks // scripts that need to stop milters. // However, signaling the process group works. fprintf(f, "-%d\n", (u_int)getpgrp()); #else fprintf(f, "%d\n", (u_int)getpid()); #endif fclose(f); } // initialize the thread sync objects pthread_mutex_init(&config_mutex, 0); pthread_mutex_init(&syslog_mutex, 0); pthread_mutex_init(&resolve_mutex, 0); pthread_mutex_init(&fd_pool_mutex, 0); pthread_mutex_init(&verifier_mutex, 0); pthread_mutex_init(&whitelister_mutex, 0); // drop root privs struct passwd *pw = getpwnam("dnsbl"); if (pw) { if (setgid(pw->pw_gid) == -1) { my_syslog("failed to switch to group dnsbl"); } if (setuid(pw->pw_uid) == -1) { my_syslog("failed to switch to user dnsbl"); } } // load the initial config config = new_conf(); if (!config) { my_syslog("failed to load initial configuration, quitting"); exit(1); } // fork off the resolver listener process pid_t child = fork(); if (child < 0) { my_syslog("failed to create resolver listener process"); exit(0); } if (child == 0) { // we are the child - dns resolver listener process resolver_socket = socket(AF_UNIX, SOCK_STREAM, 0); if (resolver_socket < 0) { my_syslog("child failed to create resolver socket"); exit(0); // failed } sockaddr_un server; memset(&server, '\0', sizeof(server)); server.sun_family = AF_UNIX; strncpy(server.sun_path, resolver_port, sizeof(server.sun_path)-1); //try to bind the address to the socket. if (bind(resolver_socket, (sockaddr *)&server, sizeof(server)) < 0) { // bind failed shutdown(resolver_socket, SHUT_RDWR); close(resolver_socket); my_syslog("child failed to bind resolver socket"); exit(0); // failed } //listen on the socket. if (listen(resolver_socket, 10) < 0) { // listen failed shutdown(resolver_socket, SHUT_RDWR); close(resolver_socket); my_syslog("child failed to listen to resolver socket"); exit(0); // failed } // setup sigchld handler to prevent zombies struct sigaction act; act.sa_handler = sig_chld; // Assign sig_chld as our SIGCHLD handler sigemptyset(&act.sa_mask); // We don't want to block any other signals in this example act.sa_flags = SA_NOCLDSTOP; // only want children that have terminated if (sigaction(SIGCHLD, &act, NULL) < 0) { my_syslog("child failed to setup SIGCHLD handler"); exit(0); // failed } while (true) { sockaddr_un client; socklen_t clientlen = sizeof(client); int s = accept(resolver_socket, (sockaddr *)&client, &clientlen); if (s > 0) { // accept worked, it did not get cancelled before we could accept it // fork off a process to handle this connection int newchild = fork(); if (newchild == 0) { // this is the worker process // child does not need the listening socket close(resolver_socket); #ifdef NS_PACKETSZ res_init(); _res.retry = 2; _res.retrans = RES_TIMEOUT; #endif process_resolver_requests(s); exit(0); } else { // this is the parent // parent does not need the accepted socket close(s); } } } exit(0); // make sure we don't fall thru. } else { sleep(2); // allow child to get started } // only create threads after the fork() in daemon pthread_t tid; if (pthread_create(&tid, 0, config_loader, 0)) my_syslog("failed to create config loader thread"); if (pthread_detach(tid)) my_syslog("failed to detach config loader thread"); if (pthread_create(&tid, 0, verify_closer, 0)) my_syslog("failed to create verify closer thread"); if (pthread_detach(tid)) my_syslog("failed to detach verify closer thread"); if (pthread_create(&tid, 0, whitelister_writer, 0)) my_syslog("failed to create autowhite writer thread"); if (pthread_detach(tid)) my_syslog("failed to detach autowhite writer thread"); time_t starting = time(NULL); int rc = smfi_main(); if ((rc != MI_SUCCESS) && (time(NULL) > starting+5*60)) { my_syslog("trying to restart after smfi_main()"); loader_run = false; // eventually the config loader thread will terminate execvp(argv[0], argv); } exit((rc == MI_SUCCESS) ? 0 : EX_UNAVAILABLE); }